Table of Contents
Welcome From The Chief Editor
Ahhh! You just know (in the Northern Hemisphere, anyways) that summer is here. Birds are singing. Kids are playing, home during their summer break from school. Mosquitos are feasting on unprotected flesh. On most evenings, you can smell the sweet acrid smoke from barbecue grills wafting through the air. You can usually find me watching the Kansas City Royals baseball games on TV, while my son yells "Go Royals" whenever the crowd cheers.
Where I'm located, dab smack in the middle of the U.S., it's as if someone just flipped a switch. We went from mild temperatures to broiling literally overnight. Of course, in the American Heartland, late spring and early summer bring intense thunderstorms and that literally pop up over the top of you. And they bring severe weather conditions with them, such as tornadoes, hail, damaging straight line winds and flash flooding.

Seems everyone is experiencing some weather extremes. Sammy2fish recently posted in the forum, lamenting the lack of rain up in the area where he lives. California is experiencing one of its worst droughts in history. In Houston, Texas (the home of Texstar), they have experienced some horrendous flash flooding after receiving atrocious amounts of rain when tropical storm Bill made landfall from the Gulf of Mexico. Near Meemaw's location in Southeast Kansas, flooding is a threat after receiving excessive rainfall totals.
Around my neck of the woods, there is ongoing scattered flooding. The ground is saturated, increasing the risk of flash flooding. The high humidity and heat of the day give birth to popup thunderstorms in the afternoon and evening. Recently, we had a line of very strong thunderstorms pass through in the middle of the night. We had 80 mph straight line winds. Limbs were sheared from trees. Some trees were uprooted completely, thanks in part to the saturated ground. We lost electrical power for most of a day, until service was restored. Over 120,000 electrical customers were left in the dark from the storm, as repair crews hurried to repair the damage.
Of course, without power, there is no internet connection via my cable broadband service. All of my laptops (which are always on) had run out of battery juice before I even woke in the morning. There is no TV. No fans. No air conditioning. No lights.
It's amazing how things you take for granted -- electricity, fans, lights, air conditioning, computers, being able to connect to the internet -- give you a pause when they are no longer available. It forces you to find other things to fill your time, causes you to think differently about how to overcome your new "obstacles," and gives you time to reflect.
No matter where you may live, every area of the world has its pluses and minuses. Some live with the ever present threat of earthquakes, hurricanes, monsoons, and a whole host of other natural disasters.
Wherever you happen to live, I bid you peace, happiness, serenity and prosperity.
Monitor Your System With Conky, Part Two
by Peter Kelly (critter)

Last month we learned the basics of conky, but now we are looking for WOW, so we will add Lua and Cairo.
Lua and Cairo
Now Lua and Cairo may sound like that nice couple you met on vacation and exchanged your e-mail addresses with, but that's not this couple.
Lua is an open source scripting language, developed and everything by the Pontifical Catholic University of Rio de Janeiro in Brazil and is spelled Lua, with a capital 'L'. Cairo is an advanced 2D graphics library. Conky can interface to Lua through a couple of hooks, and implements a few Lua specific functions.
What all of this means is that you need to provide a Lua script to Conky that perhaps uses one or more functions from the Cairo graphics libraries. Don't worry, it really isn't all that difficult. If you really don't want to go further, then there are plenty of conky configuration files that use Lua scripts available on-line, ready for you to use for your own purposes. But read on, you just might learn something you like.
Why Lua and Cairo?
Time to explain what we are trying to do here. Conky on its own can produce some fine output, but is limited to its own pre-defined functions. By adding the ability to use another scripting language, we gain access to many of the abilities of that language. Lua is an advanced and feature rich scripting language. Its addition removes many of the limitations of the basic Conky. How much it does this really depends on how far you want to go. Also, Lua is able to import external libraries of functions, and the Cairo graphical libraries feature some very useful routines using a consistent drawing model. Both Lua and Cairo are big subjects to approach, and here I will only just scratch the surface. I'll show the basic usage with some examples, and leave you to explore further on your own.
Conky doesn't need Lua and Lua doesn't need Cairo but Conky + Lua + Cairo = WOW.
Using Lua with Conky
Lua is a scripting language, and it reads a list of instructions in a plain text file known, not surprisingly, as a script. Conky therefore needs access to a Lua script, and this is achieved by adding these two lines before the TEXT section of the conky configuration file. The first line is:
lua_load the_path_to_your_lua_script (Lua scripts usually end in .lua)
This tells Conky which Lua script it should load. Obviously you need to provide a path to an actual Lua script. The script I shall use for purposes of demonstration will be
/home/user/demo.lua
The second line is:
lua_draw_hook_pre conky_demo_mag
This line tells Conky which function from the script to execute. The name of the function in the script should begin with conky_ as above but you may omit it here.
lua_draw_hook_pre demo_mag works just as well.
Also change:
update_interval 5 to update_interval 1 or a suitable value that gives a good response.
And to give us a decent display area add this line
minimum_size 400 400
As always, the ways to achieve Lua integration with Conky are many and varied, but this method is fairly simple and has worked for me.
If you add just those first two lines to your template file, leave the text section blank and then re-save the file to perhaps .conkyrc_lua, it will work. You can, of course, add more stuff to the TEXT section and have both Conky and Lua output together, but for now I'll keep things simple.
Now you need a Lua script named demo.lua The Cairo libraries create their graphics by copying a source graphic onto a Cairo surface using masks and paths to produce the final output. That is not a very accurate description of the Cairo drawing model, but it is simplistic enough for us to use while we investigate further.
The first demo uses a text graphic as the source. Extra spaces are ignored in Lua scripts, so use spaces as required for readability. This is the basic Lua script, with reference numbers added.
1 require 'cairo'
2 function conky_demo_mag()
3 if conky_window == nil then return end
4 local cs = cairo_xlib_surface_create(conky_window.display, conky_window.drawable, conky_window.visual, conky_window.width, conky_window.height)
5 cr = cairo_create(cs)
6 -- Start of output
7 cairo_select_font_face (cr, "Liberation Sans", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL);
8 cairo_set_font_size (cr, 24)
9 cairo_set_source_rgba (cr,1,0,0,1)
10 cairo_move_to (cr,80,200)
11 cairo_show_text (cr,"PCLinuxOS Magazine")
12 cairo_stroke (cr)
13 -- End of output
14 cairo_destroy(cr)
15 cairo_surface_destroy(cs)
16 cr=nil
17 end
This will simply output a line of text. For most purposes, you will only need to change the code between lines 6 and 13.
Line 1 tells Lua that the Cairo libraries are required to run this script.
Line 2 starts the definition of the function that we will call from Conky.
Line 3 checks that the Conky window exists, and if not, exits the function and, as there is nothing after the function, also exits the script.
Line 4 is more interesting. local means that what follows is local to this function only and will not be changed by other parts of the script, even if there is a name conflict. After this, a Cairo surface object is defined with properties that will: use the Conky window as a display, allow us to draw on to the surface on the Conky window, make the graphics visible, and make the surface the same width and height as the Conky window.
This allows us to use coordinates relative to Conky. The surface type is assigned to the object cs, which is how we reference it.
Line 5 a surface of type cs is created and assigned to the variable cr.
Line 6 is a comment and will be ignored. Anything after “--” is considered a comment.
Line 7 sets the font to be used on surface cr. The font face is 'Liberation Sans.' The font slant is given by the cairo constant CAIRO_FONT_SLANT_NORMAL. Another option is CAIRO_FONT_SLANT_ITALIC. The font weight is given by the Cairo constant CAIRO_FONT_WEIGHT_NORMAL. Another option is CAIRO_FONT_WEIGHT_BOLD.
Line 8 Sets the font size.
Line 9 sets the color. The format is red, green, blue, alpha and uses values in the range from 0 to 1 instead of the 0 to 255 that we are more used to. Lua can do the conversion for us on the fly by using a statement such as cairo_set_source_rgba (cr,234/255,0,107/255,1).
Line 10 moves the insertion point.
Line 11 sets the text to be shown.
Line 12 finally draws the text.
Line 13 is another comment line.
Lines 14 – 16 clean things up before leaving the function.

Running conky -d .conkyrc-lua we get this (above). Well, it works but there is no WOW factor there. Nothing we couldn't do without all this extra effort.
Note that there may be a slight delay when using Lua and Cairo before anything appears on the Conky window, particularly when parsing conky variables (as you'll see later). You may see a few warnings appear in the terminal until Conky and Lua get their stuff together. This is normal.
Change the part of the script between the two comment lines to read:
cairo_select_font_face (cr, "Liberation Sans", CAIRO_FONT_SLANT_NORMAL, CAIRO_FONT_WEIGHT_NORMAL)
cairo_set_font_size (cr, 24)
cairo_set_source_rgba (cr,1,0,0,1)
cairo_move_to (cr,80,150)
cairo_rotate (cr, -math.pi / 6)
cairo_show_text (cr,"PCLinuxOS Magazine")
cairo_set_font_size (cr, 36)
cairo_set_source_rgba (cr,1,1,0,1)
cairo_move_to (cr,210,210)
cairo_rotate (cr, math.pi / 4)
cairo_show_text (cr,"Rocks!")
cairo_set_font_size (cr, 18)
cairo_set_source_rgba (cr,19/255,197/255,11/255,1)
cairo_move_to (cr,333,210)
cairo_rotate (cr, -3 * math.pi / 4)
cairo_show_text (cr,"Linux Rules OK")
cairo_stroke (cr)

Note that the cairo_stroke (cr) call is required only once for the three blocks of text, but that is not always the case. If in doubt, include the line. Run the Conky again and you should get a display similar to the one above. Progress!
But then again, I could have just created images of rotated text in almost any graphics application and displayed them with the 'normal' Conky as images.
The big step comes when you can display 'live' text and have it appear like this, as opposed to displaying static text. You can display text that comes from interrogating the system, text that, for instance, reports the current battery charge level. It's quite easy to do.
So that's what we'll do do next.
First I'd better explain some of those new or changed lines. I've added several lines, but most are repetitions of previous lines.
The first line that is new is
cairo_rotate (cr, -math.pi / 6).
This rotates the output by an amount equal to the result of '-math.pi / 6'. Lua uses radians for angles, starts at 3 o'clock or due east from the centre of a circle and rotates clockwise. Lua has a good range of mathematical functions and -math.pi returns the negated value of pi (π). As there are 2π radians in a circle, this equates to 30º counter-clockwise. Most people are happier using degrees, so we can get Lua to do our calculations for us.
cairo_rotate (cr,-30 * (math.pi / 180))
Tip: to make sure that you are getting results you expect you can use the print command to echo the output to the terminal
print (-30 * (math.pi / 180))
This is a general purpose debugging method but is invaluable when using math.
The second line of text has an effective rotation of 15º as the rotations are cumulative. To position the text where I have, it was necessary to use coordinates of 210,210 (which I found by trial and error), but this is obviously not 210,210 in a window of 400 pixels square, that would be the approximate centre. To retain a sensible coordinate system, it is necessary to rotate back to 0º, apply the translation and then rotate as required. This then becomes
cairo_rotate (cr, 30 * (math.pi / 180)) -- Rotate back to where we were
cairo_move_to (cr, 283,40)
cairo_rotate (cr, 15 * (math.pi / 180))
These are much more reasonable coordinates.
We can also tidy up the script a little by assigning the value of the Cairo constants to variables in our template before the beginning of the output, i.e. before line 6.
f_noslant=CAIRO_FONT_SLANT_NORMAL
f_italic=CAIRO_FONT_SLANT_ITALIC
f_nobold=CAIRO_FONT_WEIGHT_NORMAL
f_bold=CAIRO_FONT_WEIGHT_BOLD
Then call them like this:
cairo_select_font_face (cr, "Liberation Sans", f_noslant, f_nobold);
To get the text from a conky variable into Lua, use the conky_parse() function. Insert these lines into the Lua script just before the cairo_stroke (cr) line.
cairo_select_font_face (cr, "Junkyard", f_noslant, f_bold)
cairo_set_font_size (cr, 38)
cairo_set_source_rgba (cr,19/255,197/255,208/255,1)
cairo_rotate (cr, 120 * (math.pi / 180))
cairo_move_to (cr,130,400)
cairo_rotate (cr, -60 * (math.pi / 180))
cairo_show_text (cr,"Battery Charge "_conky_parse("${battery_percent}"_"%"))
To concatenate the various parts of the output line we use two periods _

Now, when you see a screenshot like the one below, you will know how it was done.

Drawing
We've played around with some text in Lua, but Cairo is a powerful library of graphic functions. We can use Cairo to draw lines, arcs and rectangles. Cairo is also capable of drawing more advanced items, such as curves.
Cairo curves are cubic Bezier curves, sometimes called paths or splines. They have a start point and an end point and various intermediate control points through which they smoothly flow but don't necessarily touch. The positions of the control points determine the shape of the curve and for this reason they are known as parametric curves. Bezier curves have infinite scalability, and as a graphical element, were initially developed for the production of car bodies. These are probably not so useful in Conky, and since they are quite complex topics, I shall not discuss curves in this article.
Lines
To draw a line, you use cairo_move_to to establish the start point, and the cairo_line_to function to draw a line segment. The cairo_line_to function can be repeated to draw multiple line segments, and the cairo_close_path function used to complete a polygon. The thickness of the line can be controlled by cairo_set_line_width, and the width is distributed equally about the start or apex point. The width cannot be changed within multiple line segments. The line width remains constant between invocations of the cairo_stroke function. For open ended lines, the line ending can be one of
CAIRO_LINE_CAP_BUTT, CAIRO_LINE_CAP_ROUND or CAIRO_LINE_CAP_SQUARE
and the joints at the vertices of unclosed lines segments take the form of
CAIRO_LINE_JOIN_MITER, CAIRO_LINE_JOIN_BEVEL or CAIRO_LINE_JOIN_ROUND
You might like to assign these to variables in your template file. If you draw a closed polygon, you can make it filled by replacing cairo_stroke by cairo_fill. Then the line width is reset to one. The following will draw a regular hexagon.
cairo_set_line_width (cr,4)
cairo_move_to (cr,300,200)
cairo_line_to (cr, 250,113)
cairo_line_to (cr, 150,113)
cairo_line_to (cr, 100,200)
cairo_line_to (cr, 150,287)
cairo_line_to (cr, 250,287)
cairo_close_path (cr)
cairo_stroke (cr)
That was a brief look at using lines in Lua with the Cairo libraries.
To do something more useful, as Cairo can draw arcs as well as lines, I'm going to build a pair of speedometer type gauges for the two cores of my processor. But first, we need to look at using arcs.
Arcs
An arc is part of a circle or, if the start and end point coincide, a full circle. Arcs can also be mixed with lines to draw compound shapes. To draw an arc, you need to specify the centre coordinates, the radius, and the start and end angles of the arc. It is also necessary to control the width, color and end type of the arc, although there are defaults.
There are two cairo arc commands:
| cairo_arc | draws the clockwise |
| cairo_arc_negative | draws the arc counterclockwise |
They both require the following arguments: surface reference (we are referencing our surface with cr), centre point x,y coordinates, start angle in radians, and end angle in radians.

That's it. Arcs are easy as they accept angles. If you know what it is you are monitoring, then you can make your Conky display unobtrusive. For this one I re-sized the Conky window to accommodate a graphic and then put these lines in my Lua template.
cairo_set_source_rgba (cr,220/255,218/255,213/255,0.2)
cairo_set_line_width (cr, 10)
cairo_arc (cr,390,100,90,-90 * (math.pi/180),45 * (math.pi/180))
cairo_stroke (cr)
cairo_arc (cr,390,100,70,-90 * (math.pi/180),105 * (math.pi/180))
cairo_stroke (cr)
cairo_arc (cr,390,100,50,-90 * (math.pi/180),72 * (math.pi/180))
cairo_stroke (cr)
cairo_set_line_width (cr, 3)
cairo_move_to (cr, 390,55)
cairo_line_to (cr, 390,0)
cairo_stroke (cr)
I added a little transparency to the arcs. The angular values are random for the demo, but they could easily be parsed from Conky variables.
A new type of gauge
Tip: Use an editor that highlights matching parentheses for this (such as Kate or Geany).
First up is the pointer. I will only show the code for one core. The pointer has a fixed centre point about which it swings according to the value it is gauging. The lowest point is in the lower left quadrant and the highest in the lower right. I have chosen a value of 45º below the horizontal for both, which is equal to -225º for 0% and 45º for 100%, making up a total swing of 270º or 2.7º for each 1% of CPU activity. Lines don't understand angles, so we need to use some math to calculate the endpoints.
I am going to store the values I need in variables, and this allows us to globally change things more easily:
The CPU work rate is found by this: cpu1=((conky_parse(“cpu cpu1”)))
The angle becomes angle1=((cpu1 * 2.7) -225)
The centre point is set as ctrx1,ctrx2=100,200 This sets both x and y values
The length of the pointer id p_len p_len=60
The x coordinate of the end of the pointer is the length of the pointer multiplied by the cosine of the angle, the y value by the sine. Lua will do the math for us.
xval1=ctrx1 + (p_len * (math.cos ((angle1 * (math.pi / 180)))))
yval1=ctry1 + (p_len * (math.sin ((angle1 * (math.pi / 180)))))
After we have set the color, width and end type for the line we are done.
cairo_set_source_rgba (cr,1,1,1,1)
cairo_set_line_width (cr,4)
cairo_set_line_cap (cr,CAIRO_LINE_CAP_ROUND)
ctrx1,ctry1=100,200
cpu1=(conky_parse("${cpu cpu1}"))
cairo_move_to (cr, ctrx1,ctry1)
angle1=((cpu1 * 2.7) -225)
xval1=ctrx1 + (80 * (math.cos ((angle1 * (math.pi / 180)))))
yval1=ctry1 + (80 * (math.sin ((angle1 * (math.pi / 180)))))
cairo_line_to (cr, xval1, yval1)
cairo_stroke (cr)
Now for the outer arc of the gauge. This should appear before the code for the line in the Lua script, as we want the line to appear 'above' the arc. The colours that I want to use are: green, amber and red to represent the normal, caution and danger levels. I also want a black background. The arc centre will be the same as the pointer centre, so that variable can be re-used. The start angle is -225, the caution start angle I decided should be 75% of cpu usage and the danger start angle 90%. The danger end angle is obviously 100%. The line width needs to be greater, perhaps 14 pixels. As the centre point of the arc is the same as the centre point of the pointer and the pointer length is the same as the radius, we can re-use these values.
cairo_set_line_width (cr,14)
cairo_set_source_rgba (cr,0,0,0,0.3)
cairo_arc (cr,ctrx1,ctry1,p_len + 7,0,(2*math.pi))
cairo_fill (cr)
cairo_set_source_rgba (cr,27/255,124/255,16/255,1)
cairo_arc (cr,ctrx1,ctry1,p_len,-225 * (math.pi/180),((75 * 2.7)-225) * (math.pi/180))
cairo_stroke (cr)
cairo_set_source_rgba (cr,226/255,152/255,22/255,1)
cairo_arc (cr,ctrx1,ctry1,p_len,((75 * 2.7)-225) * (math.pi/180),((90 * 2.7) * (math.pi/180))
cairo_stroke (cr)
cairo_set_source_rgba (cr,217/255,8/255,0,1)
cairo_arc (cr,ctrx1,ctry1,p_len,((90 * 2.7) * (math.pi/180),45 * (math.pi/180))
cairo_stroke (cr)

Rectangles
Although lines can be used to draw rectangles, they are such a common object that cairo has a special function to create them, cairo_rectangle. The arguments you supply are the x,y coordinates of the bottom left corner, the width and the height. As you can imagine this makes drawing bar gauges a relatively easy task.
cairo_select_font_face (cr, "Liberation Sans", f_noslant, f_nobold)
cairo_set_font_size (cr, 18)
core1=(conky_parse("${cpu cpu1}"))
core2=(conky_parse("${cpu cpu2}"))
cairo_translate (cr, 100,200)
cairo_set_source_rgba (cr,1,1,1,1)
cairo_rectangle (cr,0,0,30,-100)
cairo_stroke (cr)
cairo_set_source_rgba (cr,0,1,0,1)
cairo_rectangle (cr,0,0,30,-core1)
cairo_fill (cr)
cairo_set_source_rgba (cr,1,1,1,1)
cairo_move_to (cr,-5,25)
cairo_show_text (cr,"core1")
cairo_move_to (cr,22,-25)
cairo_rotate (cr, -90 * (math.pi / 180))
cairo_show_text (cr,core1_" %")

I have used a new function here to move the insertion point cairo_translate.
This is by no means the extent of the capabilities of the Lua/Cairo partnership. That limit is your imagination which I hope to have fired up a little by these brief introductions.

ms_meme's Nook: Going Out Of My Mind
PCLinuxOS Recipe Corner

Beef Parmesan with Garlic Parmesan Pasta

Ingredients
1 ½ lbs beef cube steak
½ tsp kosher salt
¼ tsp black pepper
¼ C. prepared Italian salad dressing
½ C. bread crumbs
½ C. all purpose flour
½ C. parmesan cheese, shredded
1 tsp garlic salt seasoning
¼ C. olive oil
3 garlic cloves, sliced
1-1 ½ C. prepared spaghetti sauce
1 C. mozzarella cheese, shredded
½ lb angel hair pasta
4 tbsp butter
½ C. parmesan cheese
Instructions
1. Cut cube steak into individual portions and season with kosher salt and pepper. Combine breadcrumbs and flour with parmesan cheese and garlic salt. Dip each piece of cube steak into the italian dressing and then coat in the breadcrumb mixture. Set aside.
2. Heat 2 tbsp of olive oil in a large skillet over medium high heat and cook sliced garlic in the oil until very lightly browned, remove just the garlic from pan and set aside. Brown the steaks in batches until golden brown on each side, adding more oil as needed and remove from the heat -- steaks do not need to be cooked all the way through. Arrange the steaks in the skillet and pour spaghetti sauce over the top and finish with shredded mozzarella cheese.
3. Bake uncovered at 400 degrees for 30-35 minutes or until bubbly and the steaks are cooked through, time will vary depending on thickness of the steaks.
4. While steaks are in the oven, cook pasta according to package directions and drain, saving 1 C. of the starchy cooking water. Add reserved garlic, butter and parmesan cheese to hot pasta, adding the cooking water as needed to loosen it up. Serve steaks and sauce alongside the pasta.

HTPC: Using Kodi To Display Picture Slideshows
by Paul Arnote (parnote)
I know that I mentioned that Kodi seems to run on plugins, but in the case of displaying photos/images in a slideshow, nothing could be easier. Plus, it doesn't require any plugins -- unless you're trying to display online content in a slideshow. We'll start with how to display images that are stored locally on your computer's hard drive.
Displaying local images

First, you'll need to go to the "Pictures" category. Just click your mouse on the "Pictures" label.

Your screen should look like the image above. Click your mouse on the "Add Pictures..." item.

You will then see the "Add Pictures source" window, as in the image above. You can type in the full path to the directory containing your images, or you can use the "Browse" button on the right side of the window. The latter is the easiest way, and helps to insure that you avoid typing errors in the path statement.

When you select the "Browse" button, you should see the image above on your screen. Select the "Home folder," then navigate to the directory where you have your images stored that you want to display in the slideshow.

Then, click on the "OK" button.

Now, click your mouse in the lower text entry box, and give the media source a name. I chose "Pictures (Local Files)" as the media source name so that it is immediately apparent that these files are stored locally on my computer's hard drive. Click on the "Done" button on the on-screen keyboard (lower left in the image).

When you are finished, you should see something like the image above. Click on the "OK" button, and your local directory will be added to your list of media sources for the "Pictures" category.

You should see something like the image above, with your image source listed.

On my computer, I have a LOT of images, most of them sorted and stored in 64 different directories. Clicking on "Pictures (Local Files)" in the previous screen will display all of the subdirectories under my /home/parnote-toshiba/Pictures directory. It will also display all of the images that aren't sorted, and just dumped in that directory.
Highlighting the directory you want to display will cause Kodi to display thumbnail images (lower right of image) of the first four images in the directory. As an added bonus, Kodi can read archive files, such as .tar.gz and .zip files, and display any images that are contained in them -- without you having to first decompress the archive.

Double clicking on the directory (or archive file) will display a list of all of the available images.

Right clicking your mouse on the first image will bring up a context menu window, similar to the one depicted above. Select "Start slideshow here" from the menu.

The slideshow will proceed with the settings from the "System > Settings > Pictures" section -- which we review in last month's "Getting Started" article.
Displaying images from online resources
Of course, you're not restricted to displaying images that are stored locally on your computer's hard drive. For example, I store all of our images (mostly of our son Ryan, but also photos of other family members) on Google's Picasa website, to facilitate sharing them with friends and family members. Fortunately, Kodi makes it easy to create slideshows from images that you have stored in the cloud.

Click on the "Picture Add-ons" item.

Next, click on the "Get more..." item.

Now, select the online resource you want to use to display images. In my case, I chose "PicasaWeb" from the list.

Clicking on the "PicasaWeb" add-on brings up the image above. Select the "Install" button.

Once it's installed, you will want to double click on the PicasaWeb add-on and select the "Configure" button.

Enable the "Use Login" option, then enter your Login Email and Login Password (click on each field to display the on-screen keyboard). Make adjustments to any of the other settings (self explanatory ... default values shown) you might like, then click on the "OK" button.

Clicking on "Picture Add-ons," you should see something like the image above on your screen. I selected "PicasaWeb" from the installed add-ons.

Select what you want to display from your online resource. Here, I selected "Albums" from the list. You can also select by tags, view the albums from "favorite users," search your photos, or search PicasaWeb for specific images.

In just a few seconds, your album list should appear. Select the album you want to display, and your album's "cover photo" will be displayed as a thumbnail in the lower right corner of the screen.
Click your mouse on the album you want to display, and a list of images in that album will be displayed. From this point on, you can display the slideshow in nearly the same way as you do with locally stored images, with one slight difference. With the PicasaWeb add-on, I've not been able to get Kodi to playback a slideshow by right clicking an image in an album and selecting "Start slideshow here...." Instead, go back one screen (so you're not viewing the image list of the album), right click on the album itself, and select "Recursive slideshow" from the context menu.
You can also choose to stream images from Flickr, Google, or any of the other listed online resources. Even though I have a seldom used Flickr account, I installed/enabled the "flickr" add-on. Then, selecting the "flickr" add-on, I selected the "Interesting Today" category. The images then loaded, and I started a slideshow with the first listed image -- all without logging in to my Flickr account.
Correcting image orientation
Sometimes, when browsing images -- either locally stored images or those stored in the cloud -- you may (most likely will) come across images that are not displayed with the proper image orientation. Thankfully, Kodi makes it simple to correct the image orientation.
Simply press the "R" key on the keyboard to rotate the currently displayed image 90 degrees clockwise (to the right). Refer to the HTPC: Kodi Keyboard Shortcuts article, elsewhere in this issue of The PCLinuxOS Magazine, for additional keyboard controls. There's a whole set of keyboard shortcuts specifically for use by Kodi during the display of picture slideshows.
Playing music with your slideshow
Kodi uses a rather "low tech" way to allow you to to play background music with your slideshow. The only thing that would be lower tech would be to use another device (MP3 player, cassette tape, radio, etc.). To play music with your slideshow, you will need to start your music source (song, playlist, CD), then start your slideshow. The music will play in the background while your slideshow plays. We'll talk about using Kodi to play music in a future article.
Summary
Kodi provides a very entertaining and easy way to view your images. You will end up with very "professional" looking results, very easily. The only thing that could make this better is if someone would come out with a plugin that allows you to save the slideshow as a video file, complete with background music. If it has been created (and who knows ... maybe it has), I haven't been able to find it among the thousands of Kodi plugins that are out there in the wild. That would allow me to save the slideshow to a DVD, for posterity and provide another avenue by which I can share with others. If you do discover such an add-on, please let me know.

h3>GIMP Tutorial: More Photo Editing Tricks
by Meemaw
I have a couple of wallpapers that I like very much, probably since I have been to the location pictured. Several years ago, I downloaded a wallpaper of "The Mittens" in Monument Valley in southeast Utah, USA. Then, I went there during a trip to Utah several years ago, and took one of my own. As you can see, the wallpaper I downloaded, on the left, is much more colorful than the photo I took, which is on the right. Bear in mind, the original photo on the left may have been a little more dull as well, until the photographer enhanced it.

So, how am I to brighten up the one on the right? Let's use GIMP. Choose a photo you want to edit, and open a copy of it in Gimp. Navigate to Colors and select Levels. You'll see a histogram, which tells you how the pixels are distributed. If most of the black in the histogram is to the left, then your image is probably dark and underexposed. If they're to the right, then the picture may be too bright. A perfect shot will show most of the action in the middle. Mine had some in the center but lots in the right. Grabbing the arrow on the right and moving it left cleared up my photo a little.

Now let's navigate to Filters > Enhance > Sharpen. The more you sharpen the image, the more detail you can see, but be careful! I went too far with the sharpen and almost had white detail spots on top of everything and white outlines around objects. Reducing the setting solved that problem.

I also used Colors > Color Balance. I had way too much brown in the image, and that location really isn't dull brown, but many shades of orange. Be careful with this one as well, or you can drastically change the color of everything. Obviously I put too much red into this one because the clouds now have some purple in them that wasn't there before. Fortunately, all that is needed is to reduce the red setting in the color balance window. The arrow keys are very useful, as they allow you to make very small adjustments to get the color you want.

Colors > Brightness and Contrast can also help to brighten up your image. Just make tiny changes.

I went back to Color Balance and then Levels and played around a bit more. I am happier with it, but I think I can do better. You can see the before and after photos below.

Before (above) and After (below)

It is much more colorful than the drab brown photo was. Make sure you keep the original of your photo and only work on a copy. Since every photo is different, there are no absolute settings that will work on everything. The best way is to experiment with the setting until it looks right to you. Don't forget you can undo each change (<CTRL> + Z) if you don't like it. With a little more practice, I'm sure I can get it right quicker ... and you can, too!

Tip Top Tips: Terminal With "Talking Cow"
Editor's Note: Tip Top Tips is a new monthly column in The PCLinuxOS Magazine. Each month, we will feature -- and possibly even expand upon -- one tip from the PCLinuxOS forum. The magazine will not accept independent tip submissions specifically intended for inclusion in the Tip Top Tips column. Rather, if you have a tip, share it in the PCLinuxOS forum's "Tips & Tricks" section. Your tip just may be selected for publication in The PCLinuxOS Magazine.

This month's Tip Top Tip comes from PCLinuxOS forum user zen-subz.
Just to make my 'terminal' experience a bit enjoyable, I have done a bit of customization. These are the steps that I have followed:
1. Install fortune-mod and cowsay (from Synaptic).
2. Create a script with the following code, and name it cowscript.

3. Make it executable (chmod 755).
4. Place this 'cowscript' in /usr/local/bin.
5. Edit the .bashrc file and insert the word 'cowscript' in the last-line (without quotes). Save and exit.
Open your terminal(s), which will now look like this:

Without a doubt, the combined installation of cowsay and fortune-mod can make your terminal sessions much more fun, and even humorous. Heck ... either program is fun installed and run by itself, so linking them together like this can generate all kinds of laughs. So, let's dig a little deeper into these two command line programs. (Pssst! No one says you have to be serious all of the time!).
Fortune-mod does exactly what you would think it should do: it displays famous (or infamous) quotes and quips on your computer in your terminal window. Combined with the cowsay program, it can make your cow sound quite witty and smart. The "fortunes" are stored in your /usr/share/games/fortunes/ directory. While some distros package fortune-mod with potentially "offensive" quotes and quips (typically stored in the /off subdirectory), the PCLinuxOS package is lacking those. Still, the -a command line switch will allow fortune-mod to display all quotes and quips, both offensive and non-offensive. At a command line prompt in a terminal session, simply entering fortune -a will display a random quote or quip in your terminal window. I recommend reading through the fortune-mod man page for more information, should you so choose. These basics will cover our needs for now.
Cowsay is responsible for drawing the fun ASCII pictures in your terminal window. Simply entering cowsay "Say something" will display the default cow saying the text in quotes. That's the simplest way to run cowsay. But, there is so much more you can do.
At a command line prompt, enter cowsay -l (small L). It will list out all of the various "cows" that are available. Below are the cows that are available on my computer.
apt beavis.zen bong bud-frogs bunny calvin cheese cock cower daemon default dragon dragon-and-cow elephant elephant-in-snake eyes flaming-sheep ghostbusters giraffe gnu head-in hellokitty kenny kiss kitty koala kosh luke-koala mech-and-cow meow milk moofasa moose mutilated phaco pumpkin ren satanic shark sheep skeleton small small-duck sodomized sodomized-sheep stegosaurus stimpy supermilker surgery suse telebears three-eyes turkey turtle tux udder vader vader-koala www
There is also a command line switch, -f [name of cow] text to display that is also supposed to allow you to specify a particular cow file to use. When used incorrectly -- as in forgetting to specify text to display -- your terminal will just sit there. You will have to use Ctrl + C to break out of the endless loop you created. Your mileage may vary when using the cowsay command at a terminal prompt.
Depending on whether you want your cow to say something or think something, there are two valid commands to choose from. Using cowsay will cause your cow to "say" something, and is indicated by slashes leading from the cow image to the speech bubble. But using cowthink will cause your cow to think something, indicated by little "o" characters leading from the cow image to the speech bubble.
You can also specify special characters to use for the cow's eyes, by using the -e command line switch. The character string must be two characters, and the default is "oo" (without the quotes). If you choose to use the eye string, it must appear before the -f [name of cow] command line switch. Similarly, you can specify the character string to use for the cow's tongue, by using the -T command line switch. Just as with the command line switch to control the appearance of the cow's eyes, the tongue switch must be two characters long.
There are several provided modes which change the appearance of the cow, depending on its particular emotional/physical state. The -b option initiates Borg mode; -d causes the cow to appear dead; -g invokes greedy mode; -p causes a state of paranoia to come over the cow; -s makes the cow appear thoroughly stoned; -t yields a tired cow; -w is somewhat the opposite of -t, and initiates wired mode; -y brings on the cow's youthful appearance.
Custom Cows
Want your own "custom cows?" You can have those, as well. The cows are, after all, just ASCII art. Head on over to Christopher Johnson's ASCII Art Collection website, and grab some existing (already created) ASCII art images. His website has been continuously online since 1994 and the days of Netscape 1.0. He has 23 different major categories of ASCII art, with many of those categories further split down into subcategories. Are you a Trekker looking for some Star Trek ASCII art? There's a category for that (look under the Television category). Can't get enough of Star Wars, and want some Star Wars ASCII art? There's a category for that (look under the Movies category). Want some sports related ASCII art? There's a category for that.
If you can't find what you're looking for there, you might want to try to create ASCII art from a real image. Visit the ASCII Art Generator website. There, you can upload an image to be converted into ASCII art. Simple images without a lot of detail tend to work best, and the simpler the better. I visited the website and converted a picture of Texstar into ASCII art.
This ...

... became this ...

Don't hesitate to play with the settings on the website. Since we're using cowsay, we will need to create a monochrome ASCII art image. Moving the "whitepoint" slider towards the left makes the generated image lighter, and moving the "blackpoint" slider towards the right makes the generated image darker. I also found that having the top slider more towards the "Shading" end produces better ASCII art images for use with cowsay. After you've adjusted the settings, just click the "Regenerate" button to redraw your image. Don't worry ... the ASCII Art Generator runs right in your browser, and none of the images are stored on their server. Not even the images that you "upload." Once your ASCII art image is created to your satisfaction, simply copy the ASCII text from the website and paste it into your text editor.
If you're so inclined (and if you have the time), you can even create your own ASCII art from scratch. Just be sure to do it in a simple text editor, using a monospaced font.
Note that when you "grab" ASCII art images, you will have to copy the text, instead of right clicking and choosing "Save image as..." as you would do with "real" images, like with JPG and PNG files. Just save your ASCII art images as plain text files -- for now.
Next, as root, open one of the installed cow files on your computer. Don't worry ... if you installed cowsay from the PCLinuxOS repos, and they will be in the /usr/share/cows directory. Below is what the kitty.cow file looks like in a simple ASCII text editor.

Simply replace the "text" between the second $thoughts and the EOC line at the end with your ASCII art that you copied from the above website. You'll get a much better feel for what your ASCII art image will look like if you a) use a plain, ordinary text editor (Gedit, Kate, Mousepad, Leafpad, Geany, etc.) and b) if you use a monospaced font to display your text files (such as Monospace, Liberation Mono, Courier New, etc.). DO NOT use LibreOffice or any other word processor, such as Abiword or the one in the Calligra office suite, to edit or save your ASCII art image text!
Now, just resave your cow file, with its own unique name. For the image of Texstar, I called the file texstar.cow. Here's how the texstar.cow file appears in my text editor, Mousepad:

Here is how the texstar.cow file appears in my terminal:

Summary
See? Whoever said that working in a terminal session was boring never had cowsay and fortune-mod installed on their computer. Plus, with zen-subz combination of the two programs into one script, it combines both fun programs into a really fun time.
Inkscape Tutorial: Creating A Ketupat Icon
by Khadis
Here in Indonesia, Lebaran Day, which is celebrated with "ketupat" -- cooked rice that is wrapped with coconut leaves--is only several days ahead. On this day, people usually send greeting cards--and of course, with a "ketupat" image or icon. In the image below you can see ketupat before it's cooked.

Picture of ketupat in real life
There are various techniques that we can apply to create the image or icon as realistic as possible. But now, I would like to use a simple technique to create a flat "ketupat" icon. Let's go!
Open up your Inkscape and create a 5 cm x 5 cm rounded rectangle. Give it a dark green color (R: 0, G: 128, B: 0, A: 255) from the Fill and Stroke (Shift + Ctrl + F) panel. Outline is optional.

To create a rounded rectangle, just draw an ordinary rectangle, then modify it by dragging down the circle handle (top right corner of your active rectangle) using the Edit path by nodes (F2) tool.

Duplicate the rectangle using the Ctrl + D command. After that, move this new rectangle through the Transform (Shift + Ctrl + M) panel. Set the parameters as shown below, then click Apply:

The setting above will move the duplicated rectangle 5 cm to the right and additional 0.25 cm for space.
Set the second rectangle with brighter green (R: 0, G: 255, B: 0, A: 255). Duplicate (again) the rectangle using Ctrl + D and return the color into darker green (R: 0, G: 128, B: 0, A: 255).
Select all three rectangles and group them (Ctrl + G). Then, duplicate and move them using the following parameter:

Repeat the previous step so you will get the following formation:

Change the color to get the following color combination. Don't forget to un-group the rectangles (Ctrl + U) first:

Select all the rectangles and group them (Ctrl + G), then rotate them -45 degree (rotating 45 degree will produce the same result as well).

Now, create the "head" and "tails" using the Calligraphic tool (Ctrl + F6). Try to draw the "head" and the "tails" using a different parameter for each.

Final result:

HTPC: Kodi Keyboard Shortcut
by Paul Arnote (parnote)
Despite it's graphical nature, use of the keyboard makes Kodi much easier to control. Fortunately, Kodi allows the use of not only a predefined set of keyboard shortcuts, but it also allows users to remap those keyboard assignments, via the the keymap editor add-on.
We'll cover the default keyboard shortcuts for Kodi here in this article. If you want to explore the use of the Kodi keymap editor, you can check here for more information. If you are interested in exploring the format and commands used to alter the Kodi keymaps, you can refer to this page (which will give you all the information you might possibly want to know about these topics).
As a bonus, the Kodi keymaps work not only for keyboards, but also universal remote controls, gamepads and joysticks. But, by far, the most common input device used by Kodi will be a plain computer keyboard and mouse.
Default Kodi Keyboard Shortcuts
The Kodi keyboard shortcuts are divided into three categories: Global, Video playback, and Music visualization. So, in many instances, the function of the keys will change, depending on what you might be currently doing in Kodi. We'll present the keyboard shortcuts in a list. If you want to view them as an HTML table, please check out the Kodi Wiki topic here.
For brevity's sake, if a keyboard shortcut does not exist for one of the categories, that category will not be listed. When the keyboard shortcut is universal across all three categories, we'll just list “All” as the category. Similarly, when a key doesn't have any assigned function, will appear next to that key character.
0 (zero)
Video Playback: Go between the last two channels (Live TV mode).
A
Video Playback: Audio delay control.
B
Global: Schedule recording timers (Live TV mode).
Video Playback: Schedule recording timers (Live TV mode).
C
Global: Contextual menu.
Video Playback: Playlist.
D
Global: Move item down (playlist editor & favorites window).
E
Global: Live TV EPG/TV guide.
Video Playback: Live TV EPG/TV guide.
F
All: Fast Forward.
G <none>
H
Global: Live TV channels window.
Video Playback: Live TV channels window.
I
All: Info.
J
Global: Live TV radio channels window.
Video Playback: Live TV radio channels window.
K
Global: Live TV recordings window.
Video Playback: Live TV recordings window.
L
Video Playback: Next subtitle.
Music Visualization: Lock preset.
M
All: Player controls (OSD)
Global: Move file (File manager).
N
Music Visualization: Current playlist window.
O
Video Playback: Codec info.
Music Visualization: Codec info.
P
Global: Play.
Video Playback: Play.
Music Visualization: Visualization preset list.
Q
Global: Queue.
R
All: Rewind.
Global: Rename (File manager).
S
Global: Shutdown menu.
Video Playback: Shutdown menu.
Music Visualization: Show preset.
Crtl + S
All: Screenshot.
T
Video Playback: Toggles subtitles on and off.
Ctrl + T
Video Playback: Subtitle position control.
U
Global: Move item up (Playlist editor & Favorites window).
V
Video Playback: Teletext.
Music Visualization: Visualization settings.
W
Global: Mark as watched/unwatched.
X
All: Stop.
Y
All: Switch/choose player. For example, can be used to switch between internal player or a UPnP target player.
Z
Video Playback: Zoom/aspect ratio.
Space
All: Pause/Play.
Global: Current playlist window (video & music listings).
Highlight (File manager).
← (Left cursor arrow)
Global: Left.
Video Playback: Step back 30 seconds (videos), Previous channel group (Live TV).
Music Visualizations: Previous.
→ (Right cursor arrow)
Global: Right.
Video Playback: Step forward 30 seconds (videos), Next channel group (Live TV).
Music Visualizations: Next.
↑ (Up cursor arrow)
Global: Up.
Video Playback: Step forward 10 minutes, or next chapter (videos), Channel up (Live TV).
Music Visualization: Increase rating.
↓ (Down cursor arrow)
Global: Down.
Video Playback: Step back 10 minutes, or previous chapter (videos), Channel down (Live TV).
Ctrl + ← (Control + left cursor arrow)
Video Playback: Variable seek backwards.
Music Visualization: Variable seek backwards.
Ctrl + → (Control + right cursor arrow)
Video Playback: Variable seek forwards.
Music Visualization: Variable seek forwards.
Ctrl + ↑ (Control + up cursor arrow)
Video Playback: Move subtitles up.
Ctrl + ↓ (Control + down cursor arrow)
Video Playback: Move subtitles down.
PageUp
Global: Page up.
PageDown
Global: Page down.
Enter/Return
Global: Select
Video Playback: Player controls (OSD).
Music Visualization: Player controls (OSD).
Backspace
All: Back.
Esc
Global: Previous menu or Home screen.
Video Playback: Exit full screen.
. (Period)
Global: Skip forward.
Video Playback: Step forward 30 seconds.
Music Visualization: Skip forward.
, (Comma)
Global: Skip backward.
Video Playback: Step backward 30 seconds.
Music Visualization: Skip backward.
‘ (Quote)
Video Playback: Small step backwards seven (7) seconds.
Tab
All: Fullscreen playback.
PrtScn (PrintScreen)
All: Screenshot.
- (Minus)
All: Volume down.
+ (Plus)
All: Volume up.
= (Equal)
All: Volume down.
\ (Backslash)
All: Toggle between fullscreen/windowed mode.
[(Left bracket)
Video Playback: Step forward 10 minutes.
] (Right bracket)
Video Playback: Step backward 10 minutes.
Ctrl + End
Global: Exit Kodi (Home screen only).
Del
Global: Delete file (if enabled in settings).
Video Playback: Remove from playlist (Playlist editor only).
Music Visualization: Remove from playlist (Playlist editor only). Home
Global: Jump to the top of the menu (..)
[numbers] then Return
Video Playback: Jump to that time in playback. (E.g., 1+2+3+4+return will jump to 12 minutes and 34 seconds.).
Music Visualization: Jump to that time in playback. (E.g.,, 1+2+3+4+return will jump to 12 minutes and 34 seconds.).
[numbers] then ←
Video Playback: Jump backwards in that amount of time. (E.g., 1+0+← will jump back 10 seconds.)
Music Visualization: Jump backwards in that amount of time. (E.g., 1+0+← will jump back 10 seconds.)
[numbers] then →
Video Playback: Jump forwards in that amount of time. (E.g., 1+0+← will jump forward 10 seconds.)
Music Visualization: Jump forwards in that amount of time. (E.g., 1+0+← will jump forward 10 seconds.)
Shift + Letter
Global: Jump to that letter in a list.
Kodi default mouse controls
| Left Click on item | Select |
| Middle Click on item | Queue to playlist |
| Right Click on item | Context menu |
| Right Click on blank area | Back |
| Mouse Wheel Up | Up |
| Mouse Wheel Down | Down |
Kodi picture slide show controls
| 0 | Zoom Normal (100%) |
| 1 | Zoom Level 1 |
| 2 | Zoom Level 2 |
| 3 | Zoom Level 3 |
| 4 | Zoom Level 4 |
| 5 | Zoom Level 5 |
| 6 | Zoom Level 6 |
| 7 | Zoom Level 7 |
| 8 | Zoom Level 8 |
| 9 | Zoom Level 9 |
| R | Rotate |
| T | Info (EXif data) |
| . period | Next picture |
| , comma | Previous picture |
| + plus | Zoom in |
| - minus | Zoom out |
Platform specific controls for Windows, Live and Linux
Win (Windows key): Contextual menu
Summary
As you can see, you can control most -- if not all -- that Kodi does, simply from a keyboard. Married with a mouse, you have complete control over Kodi. It's doubtful that anyone will use all of the keyboard shortcuts available for Kodi, but it's nice to know they are there if you need them. It's just another reason why Kodi has developed such broad appeal among HTPC users, across all platforms.

PCLinuxOS Family Member Spotlight: The Chief
As Told To Smileeb
This month we have The Chief

How old are you?
I was 75 in June 2015.
Married, single or what?
Married since November 1959.
Children, grandchildren?
2 daughters, 3 granddaughters, 2 grandsons
Retired or working and for how long and at what.
Retired from U.S. Navy as a Senior Chief Aviation Fire Control Technician in 1980, retired from L-3 communications as a Software Engineer in 1999, went back on the payroll in 2004 and retired again in 2006 (thus doubling my pension).
What is the area you live in like. Weather, Quietness, Scenery.
I live in the southeast U.S. (Georgia). We definitely have 4 seasons, but none are usually very severe. Worst is the high humidity in the summer.
Are you handy with your hands and have any hobbies.
I have had many hobbies over the years - model airplanes, slot cars, for example, but now I'm down to only three: my truck, photography and target shooting.

What is your education level?
I am a 10th grade dropout, with a GED and 2 years of college (Auburn University) and 1 year of night classes (Georgia State University) - no degree.
Do you like to travel, go camping?
Travel: yes, camping: no. But at my age and with a semi-invalid wife, don't get to do much traveling.
What caused you to try Linux and join this forum?
I had some slight familiarity with Linux from my work as a Software Engineer. Once I retired, I decided to explore the possibilities and soon stumbled upon PCLinuxOS. It was like a breath of fresh air, and I was hooked.

Colt SAA 1873

Browning Buckmark

Colt 1911A
PCLinuxOS Family Member Spotlight is an exclusive, monthly column by smileeb, featuring PCLinuxOS forum members. This column will allow "the rest of us" to get to know our forum family members better, and will give those featured an opportunity to share their PCLinuxOS story with the rest of the world.
If you would like to be featured in PCLinuxOS Family Member Spotlight, please send a private message to smileeb in the PCLinuxOS forum expressing your interest.

Game Zone: Slinki
by daiashi

About The Game
Slinki is a side view 2.5D action-platformer where your own prosthetic arm is the ultimate multipurpose weapon. Use it as a bladed boomerang to control the population of mutated critters, pull levers towards you to get through puzzles and zip-line across grappling surfaces. All this to find out what happened to the once peaceful forest you used to live in.
Plot
Slinki's once peaceful and smooth-running home has gone horribly wrong, with every denizen gone crooked and twisted, and irrevocably hostile. Himself affected and warped as well, Slinki can just sit there and waste away, or take the last of his strength to the Forest's Core, and end the misery whatever ill-bred rascal thought to fester in it's depths.
Features
System requirements:
Fully updated PCLinuxOS and Steam
Hardware:
OS: PCLinuxOS
Processor: 1 Ghz dual core processor
Graphics: OpenGL 2.1 compatible GPU
Memory: 512 MB RAM
Hard Drive: 600 MB available space
Sound Card: Any Sound Card
About The Company
Titan Forged Games is a digital games company from Coimbra, Portugal. They're just starting out but they hope you'll enjoy their games!
History
In the early days of 2008, Nuno Barreto, a little Portuguese boy with the dream of someday making a Spider-Man videogame, had enrolled in a BSC in Computer Engineering. He was accompanied by Pedro Caetano, another young fool already set on sacrificing his life to the gods of videogaming. Together, they decided to make their own game studio. Soon after, another misled "youth," David Fial, asked to join, to help out with odds and ends. The three agreed with the daring enterprise, and joined forces. The studio was officially formed in 2012, and the first game was planned, named "Brian Storm." The team evolved with the abduction of Sérgio Alves from his peaceful existence, to lead the artistic side of the endeavour, and everything was set in motion.
Some Gameplay Screenshots

Getting It To Run
Install Steam (if you don't have it installed already), then start it. You will need to create a new account, if you do not already have one. Once you have Steam up and running, go to the store tab. Click on the Linux tab if you wish and search for Slinki. Click on and download the demo. If you have updated your system, including graphics drivers, you should be good to go.
Testimonial: My Thoughts About PCLinuxOS
by LinuxBorn
Well, I feel this topic's name is so good to introduce ourselves to tell about our first thoughts about PCLinuxOS. I am not opening the same topic name. I hope I will not upset anyone.
By the way, this is my first post here. Let's start, shall we ?
I had tried a few other Linux distribution And I like PCLinuxOS for being UNIQUE as STABLE throughout its timeline.

I'm not criticizing at all these things, for I signed up here to help and give feedback with what issues I can go through in order to see if any other 64-bit users have the same issues, and how we can fix them for the benefit of all. I'm doing that in the right forum places after deep searches at first hand.
Giving a BIG HUG to ALL the Community that is hanging out here.
And A WARM HELLO to ALL!

PCLinuxOS Puzzled Partitions
Sudoku

Download Puzzle Solutions Here
Scrappler

Download Puzzle Solutions Here
PCLinuxOS Crossword Puzzle: June2015
Around The Yard

Download Puzzle Solutions Here
Around The Yard Word Find

Download Puzzle Solutions Here
Screenshot Showcase

Posted by agmg, June 22, 2015, running KDE

Posted by billy7720, June 11, 2015, running Mate

Posted by chilly, June 04, 2015, running KDE

Posted by Hertz, June 13, 2015, running KDE

Posted by luikki, June 03, 2015, running KDE

Posted by Meemaw, June 24, 2015, running Xfce

Posted by parnote, June 23, 2015, running Xfce

Posted by present_arms, June 03, 2015, running KDE

Posted by trytip, June 02, 2015, running KDE

Posted by weirdwolf, June 02, 2015, running LXDE