
1

2

Table of Contents

Openbox: An Overview
Openbox: Edit rc.xml To Gain Control
Openbox: ZRAM – What It Is and How To Use It
Openbox: Tint2 vs. Lxpanel
Openbox: Using feh to Manage Your Wallpaper
Openbox: Customize Your Right­click Menu
Openbox Live CDs – A Comparison
Openbox: Add a Quick Launch Bar
Openbox: Customize Your Window Themes
Openbox: Use Pipe Menus for More Functionality
Openbox: Tips & Tricks
Openbox Resources: Learn More About It

Welcome to Another
PCLinuxOS Magazine Special Edition!

Just as we did with all the other window manager
series we have done, we have compiled all the
Openbox articles into a handy, easy to access pdf.

If you don't find an answer to your question here, it
may be in our previously released Special Edition
about XFCE and LXDE, since LXDE uses Openbox
as its window manager.

We hope you find this Special Edition useful.

Meemaw
Assistant Editor

3
6

16
17
24
26
29
31
36
38
41
44

3

by Paul Arnote (parnote)

If you are like most PCLinuxOS users, you have an
old computer stuck back in a closet. Like most
PCLinuxOS users, you cannot bear the thought of
an older computer that has any life left in it sitting
idle, especially if you can find a good use for that
computer.
Openbox can resurrect and re­purpose that old
computer that’s just gathering dust in the back of
that closet. With minimal hardware requirements,
Openbox can breathe new life into that old
computer, and provide a very usable second
computer.

History & Background
To get a real feel for the history of Openbox, you
have to go back in time to a point before Openbox
came to fruition. Openbox was originally derived
from the X window manager Blackbox. Blackbox
was created in 1997 as a lightweight X window
manager, and was written in C++ with entirely
original code. Along about Blackbox 0.65, Openbox
was spun off, and is written entirely in C.

Openbox, currently at version 3.4, has been devoid
of any remaining Blackbox code since version 3.0.
The Openbox project is written primarily by Dana
Jansens of Carleton University in Ottawa, Ontario,
Canada. Openbox also serves as the window
manager for the LXDE desktop environment.

Putting It To Use
I have installed Openbox on an IBM Thinkpad T23,
running a Pentium III 1.13 GHz processor, with 512
MB RAM, and a S3 SuperSavage IX/C graphics
card with 8 MB video RAM. To say that the T23 is
fast and responsive running Openbox is an
understatement. With the low CPU demands and
low memory overhead of Openbox, the T23 acts like
a new computer. I can only imagine how fast and

responsive Openbox is on a newer computer with a
faster, more modern processor and more memory.
Of course, I have fully updated my system, since the
latest Live CD is from November, 2010. I am running
the 2.38.x kernel, along with X.org 1.9.5. Above is a
screen shot that shows my CPU and memory usage.
These values are after all the tweaks I’ve applied to
my Openbox installation. For example, I’m running
tilda in the background, and using gnome­power­
manager as my battery notification and power
manager. Tint2, a lightweight panel replacement,
serves as my panel. All information comes from
running htop at the command line prompt in tilda.
Below (next page) is my tweaked Openbox desktop,
displaying a custom wallpaper I created a few years
ago. I’ve applied a custom Openbox window theme,

Openbox: An OverviewOpenbox: An Overview

http://cg.scs.carleton.ca/~dana/
http://cg.scs.carleton.ca/~dana/
http://en.wikipedia.org/wiki/Carleton_University

4

called Appleish. After my tint2 configuration took a
nosedive, I went with the default tint2 configuration –
of course, with a few custom, handmade tweaks to
the tint2 configuration file.

Summary & Things To Come
The PCLinuxOS Openbox ISO, created by
PCLinuxOS community member melodie, is rock
solid. It goes a long way to breathing new life into an

older computer you may have lying around. Will it
make your Pentium III with 512 MB RAM behave like
a new computer with a quad­core processor and 4
GB RAM? Certainly not. But then again, you will
have another computer running PCLinuxOS, and
one that can do service as a media server, or as a
computer that does the “basic tasks” (like checking
email, creating documents, browsing the web, etc.)
very, very well.
Openbox is not for beginning Linux users. Tweaking
and tuning Openbox involves, in many cases, hand
editing various configuration files that are tucked
away in your Linux file system. In keeping with the
lightweight nature of Openbox, there aren’t a lot of
GUI tools available to assist with the management of
those files, as there are with the bigger and heavier
full­blown desktop environments like KDE and
Gnome. But if you ever wanted to learn more about
Linux and how it all comes together, learning the ins
and outs of Openbox will be help you along that
path. If you are a power Linux user, then you will feel
right at home with Openbox, and with making all of
the manual edits to the configuration files to tweak
and tune your Openbox installation.
One difference that I did notice was the inclusion of
sudo in the PCLinuxOS Openbox ISOs.
Traditionally, sudo is NOT included with official
PCLinuxOS releases, since an improper use of sudo
could compromise the security of a computer it is
being used on. In somewhat of a defense, there is
not a user predefined in the sudoers file. Still, it has
become pretty much standard operating procedure
for PCLinuxOS to not embrace the use of sudo.
Having sudo pre­installed gives the opposite
impression.

Openbox: An Overview

5

As we here at the magazine explore Openbox, we’ll
be bringing you articles on ways to customize your
PCLinuxOS Openbox installation. Hopefully, these
articles will show you the elegance, simplicity and
various uses of Openbox, as well as ways you can
customize and tailor your Openbox installation.
Through the articles we have planned, we hope that
we take the “sting” out of configuring Openbox, and
show you the options you have for tweaking
Openbox. As you will see, it is actually quite easy to
make your Openbox installation quite unique.

Screenshot ShowcaseScreenshot Showcase

Want To Help?Want To Help?
Would you like to help with the PCLinuxOS
Magazine? Opportunities abound. So get
involved!
You can write articles, help edit articles, serve
as a "technical advisor" to insure articles are
correct, create artwork, or help with the
magazine's layout.
Join us on our Google Group mailing list.

Posted by Taco.22 on December 13, 2011

Openbox: An Overview

http://groups.google.com/group/pclinuxos-beautification-2009
http://groups.google.com/group/pclinuxos-magazine

6

by Paul Arnote (parnote)

Last November, we covered the lxde­rc.xml file,
back when we were covering the LXDE desktop.
Since LXDE uses Openbox as its window manager,
a lot of the information we covered then is also
applicable to the Openbox release of PCLinuxOS.
Openbox uses a file similar to that used by LXDE,
called rc.xml. The file, stored in your
/home/username/.config/openbox folder, is
responsible for helping define various aspects of
how your windows are displayed on the screen,
mousebindings, keybindings, and many other
settings. You will have to enable the display of
hidden files in your file manager in order to see the
hidden folder.
So that you can tweak, tune and customize your
Openbox installation fully and completely, let’s take
a look at the different sections of the rc.xml file, as
well as some things you can do with it.

Basic File Structure
As you might have already guessed, the rc.xml file
uses the XML format, which stands for Extensible
Markup Language. XML is very much like HTML.
Just like with HTML, the command sets have
opening and closing statements, or tags. For
example, to make bold text in HTML, you would use
some text here, placing the text you want to
make bold between the and tags.

In XML, every opening tag has a closing tag. So, if
you have a <keybind something something> tag,
you will also have a </keybind> tag to close it out.
XML commands can also be nested (and most often
are), as this excerpt from the rc.xml file shows:
<keybind key="C­A­x">

<action name="Execute">
<command>xchat</command>

</action>
</keybind>
As you can see, the nested commands in XML work
from the outside to the middle, then back out again.
In the excerpt above, we start with the keybinding
tag (<keybind …>), define the keys on the keyboard
to use (C­A­x), specify the action to take when those
keys are pressed (Execute), specify the command to
execute (<command>xchat), then we back our way
out, closing out the command tag (</command>),
then closing out the action tag (</action>), then
closing out the keybind tag (</keybind>). Failure to
close out the tags, or closing out the tags in the
wrong order, will result in a corrupt XML file. Typos
and misspellings will also result in a corrupt XML file.
So, double check everything before you save the
file! In fact, it would be a prudent decision to make a
backup copy of your original, unaltered rc.xml file.
This way should something go horribly wrong, you
can always restore your computer to a previous
working state, simply by replacing the bad rc.xml file
with one that you know works.

Fortunately, the text editor that comes installed on
the PCLinuxOS Openbox releases is Geany, which
is very good at syntax highlighting. While it may not
initially seem like a really big deal, syntax
highlighting in a text editor can save you hours of
debugging time, in the event that you end up with a
corrupt XML file. Since the highlighting is done “on
the fly,” it’s also easy and quick to see if you have
made any mistakes as you are typing the
commands.
You may notice comments interspersed throughout
the rc.xml file. Comment lines are those that look like
this:
<!­­ comment placed here ­­>
If you make additions to your rc.xml file, it would be
a great idea to also insert your own comments. Six
months after you make changes or additions, you
may not remember exactly what you did, unless you
left yourself a “calling card” of sorts, in the form of a
comment that describes what you did. Also, the
comments that are built into the default rc.xml file
can go a long way in helping you understand what to
do in any given section of the file.
When you open up the rc.xml file, you will notice that
the first tag in the file starts off <openbox­config
something something>. This means that the last tag
in the rc.xml file will be </openbox­config>, to close
out the rc.xml file. In between will be all of the other
XML tags that define the Openbox options.

Openbox: Edit rc.xml To Gain ControlOpenbox: Edit rc.xml To Gain Control

7

First Section: Resistance
Think of the resistance setting as how hard you have
to push a window on your screen against the screen
edge before it moves that window to the next virtual
desktop. The higher the number, the harder you
have to “push” before that window will move to the
next desktop. Here are the default settings in the
installed Openbox:
<resistance>

<strength>10</strength>
<screen_edge_strength>20
</screen_edge_strength>

</resistance>
The “strength” setting determines how much
resistance there is between adjacent windows,
before one is allowed to overlap the other. The
“screen_edge_strength” setting determines how
much resistance there is at the screen edge, before
allowing the selected window to move to the next
desktop.
On my copy of Openbox, I’ve changed the strength
to 50, and the screen_edge_strength setting to 100.
This requires me to push fairly hard against the
screen edge, before the window moves over to the
next desktop. I’ve done this because sometimes I
simply want a window positioned at the screen edge,
and not moved to another desktop.

Second Section: Focus
The second section of rc.xml deals with how
Openbox focuses the windows on your desktop.
There are a number of options you can choose from.
Here is the “focus” section from my installation of
Openbox:
<focus>

<focusNew>yes</focusNew>
<!­­ always try to focus new windowswhen they appear. other rules doapply ­­>
<followMouse>no</followMouse>
<!­­ move focus to a window when youmove the mouse into it ­­>
<focusLast>no</focusLast>
<!­­ focus the last used window whenchanging desktops, instead of the oneunder the mouse pointer. whenfollowMouse is enabled ­­>
<underMouse>no</underMouse>
<!­­ move focus under the mouse, evenwhen the mouse is not moving ­­>
<focusDelay>200</focusDelay>
<!­­ when followMouse is enabled, themouse must be inside the window for

this many milliseconds (1000 = 1 sec)before moving focus to it ­­>
<raiseOnFocus>no</raiseOnFocus>
<!­­ when followMouse is enabled, anda window is given focus by moving themouse into it, also raise the window­­>

</focus>
To start with, the “FocusNew” setting tells Openbox
to automatically focus on any new windows that are
displayed on your desktop. The “followMouse”
setting tells Openbox to change the window focus to
the window under your mouse. The default setting
here is “yes,” but I have changed that to “no.”
The “focusLast” setting only has an effect when
“followMouse” is enabled, or set to “yes.” The default
value for “focusLast” is “no.” Changing it to “yes” will
automatically re­focus the last active window on a
different desktop, instead of allowing the focus to
change to whichever window is currently under your
mouse pointer.
With the “underMouse” setting, the window focus is
moved to the window under the mouse, even if the
mouse isn’t moving. The default value is “no.” The
“focusDelay” setting selects the number of
milliseconds delay before the window is focused
when moving a mouse into a window. The default
value is 200 ms. The “raiseOnFocus” setting causes
the window receiving the focus to be raised to the
top, automatically. The default setting is set to “no.”
These three settings are dependent on the

Openbox: Edit rc.xml To Gain Control

8

“followMouse” setting, and if the “followMouse”
setting is turned off (set to “no”), then these settings
effectively do nothing.

Third Section: Placement
The “Placement” section of the rc.xml file tells
Openbox how to place the windows on your
desktop. The default values are shown below:
<placement>

<policy>Smart</policy>
<!­­ 'Smart' or 'UnderMouse' ­­>
<center>yes</center>
<!­­ whether to place windows inthe center of the free area foundor the top left corner ­­>
<monitor>Active</monitor>

</placement>
You can choose whether the windows are placed
under the mouse, or if Openbox places the windows
(the “smart” policy). You can also determine if the
windows are centered on your desktop or not, by
changing the “center” setting.

Fourth Section: Theme
The “Theme” section of rc.xml tells Openbox what
theme to use when displaying your windows, as well
as what options (fonts, window decorations, window
decoration order, etc.) to use. Below is a snippet of
the theme section of the rc.xml file:
<theme>

<name>Appleish</name>
<titleLayout>NSLIMC</titleLayout>
<!­­avaible characters are NDSLIMC,each can occur at most once.N: window iconL: window label (AKA title).I: iconifyM: maximizeC: closeS: shade (roll up/down)D: omnipresent (on all desktops).­­>
<keepBorder>yes</keepBorder>
<animateIconify>yes</animateIconify>

<name>Liberation Sans</name>
<size>10</size>
<!­­ font size in points ­­>

<weight>Bold</weight>
<!­­ 'bold' or 'normal' ­­>
<slant>Normal</slant>
<!­­ 'italic' or 'normal' ­­>

...

The first setting, “name,” tells Openbox which theme
I’ve chosen to use. In my case, that is the “Appleish”
theme, which I installed via Synaptic.
The next setting, “titleLayout,” tells Openbox which
window decorations you want to have displayed on
the window title bar, along with the placement of
those decorations. Fortunately, there is a “key”
provided in the comments of this section of the
rc.xml file. Each character can be used only once in
any given theme.
The “keepBorder” setting tells Openbox if it should
keep the window borders if window decorations are
turned off. The default value here is “yes.” The
“animateIconify” setting enables a slight animation
feature when the windows are minimized to the
panel. The default setting is “yes.”
Next, we specify the attributes of the various text
parts of the theme. Starting with the title bar of the
“ActiveWindow,” we specify the “name” of the font,
“size” of the font, “weight” of the font, and the “slant”
of the font. We repeat this for each of the following:

Openbox: Edit rc.xml To Gain Control

9

InactiveWindow, MenuHeader, MenuItem and
OnScreenDisplay.
We’ll discuss themes in more depth, a little later, in a
separate article.

Fifth Section: Desktops
As you may guess, this section of the rc.xml file
specifies the details about your virtual desktops.
<desktops>

<!­­ this stuff is only used atstartup, pagers allow you to changethem during a session
these are default values to use whenother ones are not already set byother applications, or saved in yoursession
use obconf if you want to change thesewithout having to log out and back in­­>
<number>4</number>
<firstdesk>1</firstdesk>
<names>
<name>Water</name>
<name>Fire</name>

<name>Earth</name>
<name>Air</name>
</names>
<popupTime>500</popupTime>
<!­­ The number of milliseconds toshow the popup for when switchingdesktops. Set this to 0 to disable thepopup. ­­>

</desktops>
The first setting, “number,” sets the number of virtual
desktops available. The “firstdesk” setting specifies
which desktop should be displayed when Openbox
is first started. Under the “names” setting, you can
give a name to each of your virtual desktops. You
can give them any name you want. You can call
them the names of your children, give them
philosophical names, or keep it simple and give
them numbers. By default, they are named Water,
Fire, Earth and Air. The last setting, “popupTime,”
setts the number of milliseconds to show the popup
window on your screen, when changing desktops.
The default setting is 500 ms, or one­half second.

Sixth Section: Resize
The “Resize” section governs how Openbox displays
windows when you are resizing or moving windows.
Below is the “resize” section of the rc.xml file, with all
the default values displayed:

<resize>
<drawContents>yes</drawContents>
<popupShow>NonPixel</popupShow>
<!­­ 'Always', 'Never', or 'Nonpixel'(xterms and such) ­­>
<popupPosition>Center</popupPosition>
<!­­ 'Center' or 'Top' ­­>
<popupFixedPosition>
<x>0</x>
<y>0</y>
</popupFixedPosition>

</resize>
The “drawContents” setting tells Openbox to redraw
the program inside the window whenever you are
resizing or moving the window. The “popupShow”
setting, set to “NonPixel,” only displays a popup
window on the screen when the resizing window
specifies that it is being resized more than one pixel.
The popup window shows the screen coordinates for
the resized window, along with the pixel size of the
window. This usually applies to terminals. You can
also set the “popupShow” setting to always be
displayed, or to never be displayed.
The “popupPosition” setting allows you to specify the
location where the popup window will appear. With

Openbox: Edit rc.xml To Gain Control

10

the default setting of “center,” the popup window is
displayed at the center of the window being resized
or moved. The other choices are “top,” where the
popup window is displayed above window’s title bar,
or “fixed,” where the popup window is displayed at a
location defined by “popupFixedPosition.” The latter
accounts for the two settings, x and y, under the
“popupFixedPosition” setting.

Seventh Section: Margins
The “margins” section of the rc.xml file literally
creates margins on your screen.
<margins>

<top>1</top>
<bottom>2</bottom>
<left>2</left>
<right>2</right>

</margins>
Specify the number of pixels you want to have as a
screen margin in the top, bottom, left and right
settings, and no items (except for wallpaper) will be
drawn in those areas of your screen.

Eighth Section: Dock
Openbox makes good use of items from other
desktops and window managers, and allows you to
use any number of dockapps that are available for
WindowMaker, Xfce, KDE, Gnome, and many
others. You can find a whole slew of dockapps
available for use with Openbox at dockapps.org. The
“dock” section of the rc.xml file helps govern their
placement, and is in effect only if you are running a
dockapp.
<dock>

<position>TopLeft</position>
<!­­ (Top|Bottom)(Left|Right|)|Top|Bottom|Left|Right|Floating ­­>
<floatingX>0</floatingX>
<floatingY>0</floatingY>
<noStrut>yes</noStrut>
<stacking>Above</stacking>
<!­­ 'Above', 'Normal', or 'Below' ­­>
<direction>Horizontal</direction>
<!­­ 'Vertical' or 'Horizontal' ­­>
<autoHide>no</autoHide>
<hideDelay>300</hideDelay>

<!­­ in milliseconds (1000 = 1 second)­­>
<showDelay>300</showDelay>
<!­­ in milliseconds (1000 = 1 second)­­>
<moveButton>Middle</moveButton>
<!­­ 'Left', 'Middle', 'Right' ­­>

</dock>
The “position” setting allows you to set where the
dockapp appears. The default value is TopLeft.
Other possibilities are TopRight, BottomLeft,
BottomRight, Top, Bottom, Left, Right or Floating. If
you select floating, then the next two settings,
floatingX and floatingY set the horizontal and vertical
positioning, respectively.
The “noStrut” setting allows windows to be placed
over the dockapp. The “stacking” setting determines
which layer of the desktop to place the dockapp.
You can decide if your dockapps are positioned in a
vertical or horizontal row with the “direction” setting.
By toggling the “autoHide” setting (the default is
“no”), you can cause your dockapps to automatically
hide until you mouse over their position. If the
“autoHide” setting is activated, then the “hideDelay”
and “showDelay” settings are activated. The setting
for both are in milliseconds, and the default value is
300 ms.

Openbox: Edit rc.xml To Gain Control

http://dockapps.org

11

Finally, the “moveButton” setting determines which
mouse button to use to move the dockapp to a new
location on your desktop. The default value is
“Middle.”

Ninth Section: Keyboard
The “keyboard” section is typically the largest
section of the rc.xml file, and one where you can
make some very interesting changes in the
functionality of Openbox. Below is an excerpt from
the first few lines of the keyboard section of my
rc.xml file:
<keyboard>

<!­­ Keybindings for desktop switching­­>
<keybind key="C­A­Left">
<action name="DesktopLeft">
<dialog>no</dialog>
<wrap>yes</wrap>

</action>
</keybind>
<keybind key="C­A­Right">
<action name="DesktopRight">

<dialog>no</dialog>
<wrap>yes</wrap>

</action>
</keybind>
<keybind key="C­F1">
<action name="Desktop">
<desktop>1</desktop>

</action>
</keybind>

I previously covered keybindings fairly thoroughly in
the November, 2010 article LXDE: Meet The Heart &
Soul – lxde­rc.xml. Since LXDE uses Openbox as its
window manager, the information in that article
applies equally to the Openbox rc.xml file. Instead of
repeating all of that information here, I’ll simply refer
you to that article for a more complete discussion of
keybindings.
One thing that I did find in my installation of
Openbox were keybindings that were either
duplicated, or that are assigned to keystroke
combinations that typically are reserved for other
functions. For example, for the “DesktopLeft” and
“DesktopRight” settings in my excerpt above, the
default values are defined as C­Left (Control key +
Left cursor key) and C­Right (Control key + Right
cursor key), respectively. However, those keystroke

combinations are typically reserved for use in word
processing programs to move your cursor through
your document one word at a time. Thus, I changed
my keybindings for “DesktopLeft” and
“DesktopRight” to C­A­Left (Control key + Alt key +
Left cursor key) and C­A­Right (Control key + Alt key
+ Right arrow key). This preserves the proper
functioning of the original keystroke combination for
use in my word processing programs.
Another dubious keybinding (for me, at least) is the
definition of the C­w (Control key + “w” key) to
execute the “ShowMenu” function, that brings up a
menu displaying all of the desktops and the
applications running on each one. I typically use the
C­w key to close out child windows in an application,
like individual tabs in my web browsers. I simply
changed my keybindings so that C­A­w executes the
“ShowMenu” function, preserving the use of C­w for
what I normally use it for.
Additionally, many keybindings are defined to use
the Super key (a.k.a. the Windows key). However,
my IBM T23 does not have a Super key, so those
keystroke combinations are impossible for me to
use. Instead, I changed those keybindings that use
the Super key to keybindings that use Control + Alt.
One real beauty of the “keyboard” section of the
rc.xml file is that I can change the keystroke
combinations used so that they are more closely
tailored to how I tend to work with my computer, and
to better fit the configuration of my hardware. For the
predefined keybindings that use the the Super key to
launch programs I never or rarely use, or that
perform tasks that I customarily don’t perform from
the keyboard, I simply left them unchanged.

Openbox: Edit rc.xml To Gain Control

http://pclosmag.com/html/Issues/201011/page09.html
http://pclosmag.com/html/Issues/201011/page09.htmlhttp://pclosmag.com/html/Issues/201011/page09.html

12

Another real beauty of the “keyboard” section is that
if there is a bash script you like to routinely run, you
can assign it a keybinding so that it is only a
keystroke or two away from execution.
I recommend that you study how the keybinding
section is set up. It won’t take long before you catch
on to the format and start coming up with your own
custom keybindings. If you want more information on
keybindings, you can visit the Openbox Wiki entry
on keybindings, where there is a complete
breakdown of all of the keybinding settings. We’ll
also be mentioning keybindings later on, in other
Openbox articles in The PCLinuxOS Magazine.

Tenth Section: Mouse
Under the “mouse” section of the rc.xml file, you can
control most of the settings for how your mouse
functions under Openbox. Below is an excerpt from
the rc.xml file on my Openbox installation (this
section is too long to print in its entirety):
<mouse>

<dragThreshold>8</dragThreshold>
<!­­ number of pixels the mouse mustmove before a drag begins ­­>
<doubleClickTime>200</doubleClickTime>
<!­­ in milliseconds (1000 = 1 second)­­>

<screenEdgeWarpTime>400</screenEdgeWarpTime>
<!­­ Time before changing desktops whenthe pointer touches the edge of thescreen while moving a window, inmilliseconds (1000 = 1 second). Setthis to 0 to disable warping ­­>
<context name="Frame">
<mousebind button="A­Left"action="Press">
<action name="Focus"/>
<action name="Raise"/>

</mousebind>
<mousebind button="C­A­Left"action="Click">
<action name="Unshade"/>

</mousebind>
<mousebind button="A­Left"action="Drag">
<action name="Move"/>

</mousebind>
<mousebind button="A­Right"action="Press">

<action name="Focus"/>
<action name="Raise"/>
<action name="Unshade"/>

</mousebind>
Some basic mouse settings, like how fast a double
click of the mouse has to occur before it is
recognized as a double click, the number of pixels to
move the mouse before it is recognized that you are
dragging a window or other screen element, or how
much time you have to push a window against a
screen edge before it warps to the adjacent desktop,
are taken care up right up front.
The bulk of the “mouse” section deals with
mousebindings. Mousebindings are very, very
similar to keybindings, and define what action to
take when different mouse buttons are pushed, in
combination with certain key presses, depending on
the context in which Openbox detected them. The
latter is determined by the “context name” setting.
For a full discussion of the settings you can make,
check out the Openbox Wiki page on
mousebindings. Most users probably won’t find
much of a reason to mess around with the
mousebindings – unless you are a tweak­aholic, or
unless you have the latest, greatest gaming mouse
with 56 button combinations.

Openbox: Edit rc.xml To Gain Control

http://openbox.org/wiki/Help:Bindings#Key_bindings
http://openbox.org/wiki/Help:Bindings#Mouse_bindings

13

Eleventh Section: Menu
As you might imagine, the “menu” section controls
the behavior of menus on Openbox. Below is the
entire menu section from the rc.xml file on my
Openbox installation:
<menu>

<!­­ You can specify more than one menufile in here and they are all loaded,just don't make menu ids clash or,well, it'll be kind of pointless ­­>
<!­­ default menu file (or custom onein $HOME/.config/openbox/) ­­>
<file>menu.xml</file>
<hideDelay>200</hideDelay>
<middle>no</middle>
<submenuShowDelay>100
</submenuShowDelay>
<applicationIcons>yes
</applicationIcons>

</menu>
The first setting, “file,” specifies which file contains
the data used to create the application menu in
Openbox, which is accessible via a right click on the
desktop. You can have multiple menu files, but as

the comments above indicate, you have to insure
that there are no clashes between menu ids across
all of the menu files. Typically, the menu file being
specified here resides in your
/home/username/.config/openbox folder. There is
another menu.xml file in etc/xdg/openbox, but to
be totally honest, I cannot see that it is used or
where it fits into the picture.
The “hideDelay” setting causes the menu to
immediately disappear if you click longer than the
specified length of time (default is 200 ms). If you
are a “slow mouse clicker,” you may want to specify
a longer time. Just remember that 1000 ms equals 1
second, so 500 ms would be one­half of a second.
Clicking and releasing the menu for a time less than
that specified will cause the menu to continue being
displayed when you release the mouse button.
The “middle” setting causes the menus to be center
aligned vertically, as opposed to being top aligned.
The “submenuShowDelay” and
“submenuHideDelay” (not shown) determine the
time delay before showing, and subsequently hiding,
a submenu. Both values must be less than the
“hideDelay” setting, or they are ignored.
With the “applicationsIcons” setting, you can tell
Openbox whether or not to show the application
icons on the desktop and in the application menu. I
have found that this setting has no effect with the
right click Openbox application menu, as I’ve never
seen any application icons displayed in that menu,
regardless of the setting. However, it may play a role
when you use a bona fide application launch menu,
like that which you get when using the LXDE panel
(lxpanel).

One setting not included in the menu section of the
rc.xml file on my Openbox installation is the
“manageDesktops” setting. This allows you to add or
subtract desktops as you need, on the fly, right from
the right click Openbox menu. If you are working
along, and all of a sudden discover that having
another it would help your productivity to have an
additional desktop desktop, you can add it right
there, on the spot, from the right click Openbox
menu. Apparently, the default value for this setting is
“yes,” since I have that ability in my right click
Openbox menu, despite its absence from the menu
section of my rc.xml file.

Twelfth Section: Applications
Under the “applications” section, you can define the
behavior of individual applications in Openbox.
Below is a copy of the “applications” section of my
rc.xml file:
<applications>

<application name="draklive­install">
<maximized>true</maximized>

</application>
<application name="tint2">
<layer>below</layer>

</application>

Openbox: Edit rc.xml To Gain Control

14

… (example deleted)
</applications>
This section of your rc.xml file can easily become
quite a bit larger than what is shown here. With the
settings in this section, I can specify positioning,
desktops, display states, layers and a whole host of
other options, for each of the applications you
typically run.
Call me a creature of habit if you will, but I’ve gotten
into the habit of having my web browser window on
desktop 1, and my open IRC chat client on desktop
3. I do this on all of my computers, all running
different versions of PCLinuxOS. It just one thing
that helps keep me organized when I have several
applications open at the same time.
So, if I click on a link in IRC, I really don’t want
Firefox to open up on desktop 3. It puts a chink in
my routine. With the settings in the “applications”
section of my rc.xml file, it’s very easy to restrict
Firefox to opening only on desktop 1.
In order to provide Openbox the information it
needs, it’s a good idea to run a command line
program, called obxprop. When you run obxprop,
the cursor will change to a cross­hair. Move your
cursor over the window you want information on,
and click your cursor. Immediately, you will be
presented with a lot of information, as in the image
below:

You are looking for the information highlighted in the
red box. You need to specify either the
_OB_APP_CLASS or _OB_APP_NAME, or both in
order for Openbox to find the proper application. You
can shorten the output by entering obxprop | grep
"^_OB_APP" to list only the information needed by
Openbox.
Now that you have the information that Openbox
needs, you can start to set up your application
specific controls. First, we need to tell Openbox
which application we want to make rules for. We do
this by specifying the name and/or class of the
application, with the information provided by
obxprop.
<application name="chromium­browser"class=”Chromium­browser>
Let’s say we always want Chromium to start up on
desktop 1. We next need to enter the following:
<desktop>1</desktop>

If we wanted to make sure that it always opened up
maximized, we’d enter another line:
<maximized>true</maximized>
Finally, we close out the “application” tag:
</application>
You can also use wildcard characters in the name
and class fields. A “*” matches any number of
characters, while a “?” matches any single character.
There are several options available when making
application specific settings or rules. Refer to the
Openbox Wiki section on per application settings to
see examples on how to apply those rules and
settings. You can also take a look at your rc.xml file
to see some examples of how to set up application
specific rules and settings.

Thirteenth Section: Coordinates
This section of the rc.xml file is not included in my
Openbox installation. As such, this section can be
considered to be optional, since everything works
just fine without it. If you are interested in learning
more about the coordinates section of the rc.xml file,
I’ll refer you to the coordinates section of the
Openbox Wiki.

Openbox: Edit rc.xml To Gain Control

http://openbox.org/wiki/Help:Applications
http://openbox.org/wiki/Help:Configuration#Coordinates

15

Summary
As you can see, the rc.xml file exerts a lot of control
over the behavior of Openbox. Once you get the
hang of the XML format of the file, making changes
is very easy. Because it is so easy to make changes,
and because it offers so many options, you have a
lot of leeway in customizing the behavior of your
Openbox installation. You can truly tailor and trim
your Openbox installation to be uniquely yours.

Screenshot ShowcaseScreenshot Showcase

Are viruses,
adware, malware &
spyware slowing
you down?
Get your PC back
to good health
TODAY!
Get

Does your computer run slow?
Are you tired of all the "Blue Screens
of Death" computer crashes?

Download your copy today! FREE!
Posted by LKJ on January 5, 2012

Openbox: Edit rc.xml To Gain Control

http://www.pclinuxos.com/?page_id=10

16

by Darrel Johnston (djohnston)

ZRAM (formerly ramzswap) is a block device which
is created in your computer’s memory, or RAM. It
looks and acts to the system like a disk drive.
However, this disk drive has only one function, to act
as a swap disk. One difference between ZRAM and
a normal swap partition is that the pages swapped to
ZRAM are compressed before being stored. This
technique has two advantages. (1) More page data
can be stored because the data is compressed. (2)
Because the swapped memory is stored in RAM,
rather than a normal disk drive, read and write
access times are much quicker.
The author of the program, nitingupta910, mentions
another possible use on his Google code webpage.
“With compcache at hypervisor level, we can
compress any part of guest memory transparently ­
this is true for any type of Guest OS (Linux,
Windows etc.). This should allow running more
number of VMs for given amount of total host
memory.”
Melodie has the older version (ramzswap) enabled
on the live CDs for Openbox Bonsai and Openbox
full, “out of the box” (pun intended). She has the new
version (ZRAM) enabled on the Openbox Edu live
CD. Both versions initialize a block device in RAM
from the /etc/rc.d/rc.local file. The first (ramzswap)
version creates the device /dev/ramzswap0. The
size of the ramzswap0 device is defined by using the
rzscontrol executable. The default size is 15% of
RAM. The device can be used as a front end to a
swap partition on a disk drive by defining the swap
partition in the rc.local file as shown below.

Ramzswap will act like a swap front endif RAMZ_BACKING_SWAP is defined.
Writes are forwarded to this device whenmemory limit is reached or data# is not compressible.
i.e. RAMZ_BACKING_SWAP="/dev/sda3"
RAMZ_BACKING_SWAP=""
For kernel version 2.6.37 or higher, the device
created is /dev/zram0. The rzscontrol executable
can not be used to modify the zram0 device, so is no
longer needed. Since it uses a different kernel
module, the older /etc/rc.d/rc.local file must be
replaced with the newer version. You can obtain it
here. If you use the default parameters, the zram0
device will be 25% the size of available RAM. For
example, if you have 1GB of available RAM, the
created zram0 device will be 256MB in size, leaving
you with 768MB of RAM. The default size is defined
in the portion of the rc.local file shown below.
Swap size = 25% of free memory;ZRAM_SWAP_SIZE=$(($FREE_MEM/4))
echo $(($ZRAM_SWAP_SIZE * 1024 * 1024)) >/sys/block/zram0/disksize
In order to change the size to a fixed amount,
comment the ZRAM_SWAP_SIZE= line and replace
the string $(($ZRAM_SWAP_SIZE * 1024 * 1024))
with an integer representing the total number of
bytes. As an example, to get a fixed size of 256MB
of ZRAM, you would edit the rc.local file as shown
below.

Swap size = 25% of free memory;# ZRAM_SWAP_SIZE=$(($FREE_MEM/4))
Swap size = 256MBecho 268435456 > /sys/block/zram0/disksize
I understand the advantages of using a ZRAM
device, and agree that storing virtual machines
within ZRAM devices is a more efficient method for
utilizing available RAM. What I struggle with is
understanding how it is more useful on a desktop or
laptop than a conventional swap partition, other than
the speed advantage.

PCLinuxOS Magazine Mailing List:
http://groups.google.com/group/pclinuxos­magazine

PCLinuxOS Magazine Web Site:
http://pclosmag.com/

PCLinuxOS Magazine Forums:
PCLinuxOS Magazine Forum:

http://pclosmag.com/forum/index.php
Main PCLinuxOS Forum:

http://www.pclinuxos.com/forum/index.php?board=34.0
MyPCLinuxOS Forum:

http://mypclinuxos.com/forum/index.php?board=157.0

Reach Us On The Web

Openbox: ZRAM - What It Is & How To Use ItOpenbox: ZRAM - What It Is & How To Use It

http://groups.google.com/group/pclinuxos-magazine
http://pclosmag.com
http://pclosmag.com/forum/index.php
http://www.pclinuxos.com/forum/index.php?board=34.0
http://mypclinuxos.com/forum/index.php?board=157.0
https://code.google.com/u/nitingupta910/
https://code.google.com/p/compcache/
http://www.pclinuxos.com/forum/index.php?PHPSESSID=b8v521pfp6kc5urc37trkepu72&topic=89269.msg747450#msg747450

17

by Paul Arnote (parnote)

As you may have noticed, the PCLinuxOS version of
Openbox comes in two versions: a “full” version with
a full compliment of pre­installed applications, and
the “Bonsai” version, which is a lightweight
installation that comes with a minimum of pre­
installed applications. But the differences don’t stop
there.
One notable difference is the selection of the panel
used by the two versions. The “full” version uses
tint2 as the panel, while Bonsai uses lxpanel to
provide the end user with a useful panel.
Lxpanel is “borrowed” from the LXDE desktop. Tint2
is a product of a “Google Summer of Code” project,
with the aim to create a simple, easy to use and
lightweight panel. Currently, tint2 is up to version
0.11.
Both work exceptionally well, and both are excellent
choices for a lightweight panel. Which you use
depends on what you are expecting from a panel.
At first glance, the most noticeable difference is that
lxpanel has an application menu, a quick launch
area, and a desktop pager, while those items are
lacking in the tint2 panel. However, both lxpanel and
tint2 have a task bar area, a system tray and a
clock. My initial reaction to the tint2 panel wasn’t all
that positive, since it was missing some of the items
I was accustomed to using on my panel. However,
the “missing items” on the tint2 panel really aren’t all
that missed, since all of those items are available

from the Openbox right click menu, regardless of
which panel you choose to use.
Since we have already covered lxpanel in a previous
issue (October, 2010) when we were covering the
LXDE desktop, much of the rest of this article will
deal with tint2 and how to configure it.

Tint2
Let’s start off by taking a closer look at the tint2
panel (bottom).
The tint2 panel, by default, does not show you all
desktops in a single view, nor does it separate the
icons by desktop. Thankfully, the tint2 panel is
configurable and easy to configure, thanks to the
tint2rc file. It is located in your
/home/username/.config/tint2 folder. With just
a few simple edits of the tint2rc file, you can easily
configure tint2 to be the panel you want.

Here’s the tint2rc file from my Openbox installation:

Tint2 config file# Generated by tintwizard(http://code.google.com/p/tintwizard/)# For information on manually configuringtint2 seehttp://code.google.com/p/tint2/wiki/Configure
Background definitions# ID 1rounded = 7border_width = 2background_color = #000000 60border_color = #FFFFFF 16
ID 2rounded = 5border_width = 0background_color = #FFFFFF 40border_color = #FFFFFF 48
ID 3rounded = 5

Lxpanel

Tint2

Openbox: Tint2 vs LxpanelOpenbox: Tint2 vs Lxpanel

http://pclosmag.com/html/Issues/201010/page07.html
http://pclosmag.com/html/Issues/201010/page07.html

18

border_width = 0background_color = #FFFFFF 16border_color = #FFFFFF 68
Panelpanel_monitor = allpanel_position = bottom center horizontalpanel_size = 94% 30panel_margin = 0 0panel_padding = 7 0 7panel_dock = 0wm_menu = 0panel_layer = toppanel_background_id = 1
Panel Autohideautohide = 0autohide_show_timeout = 0.3autohide_hide_timeout = 2autohide_height = 2strut_policy = follow_size
Taskbartaskbar_mode = multi_desktoptaskbar_padding = 2 3 2taskbar_background_id = 0taskbar_active_background_id = 0
Tasksurgent_nb_of_blink = 8task_icon = 1task_text = 1task_centered = 1task_maximum_size = 140 35task_padding = 6 2task_background_id = 3task_active_background_id = 2task_urgent_background_id = 2task_iconified_background_id = 3

Task Iconstask_icon_asb = 70 0 0task_active_icon_asb = 100 0 0task_urgent_icon_asb = 100 0 0task_iconified_icon_asb = 70 0 0# Fontstask_font = sans 7task_font_color = #FFFFFF 68task_active_font_color = #FFFFFF 83task_urgent_font_color = #FFFFFF 83task_iconified_font_color = #FFFFFF 68font_shadow = 0
System Traysystray = 1systray_padding = 0 4 5systray_sort = ascendingsystray_background_id = 0systray_icon_size = 16systray_icon_asb = 70 0 0
Clocktime1_format = %H:%Mtime1_font = sans 8time2_format = %a %B %dtime2_font = sans 6clock_font_color = #FFFFFF 74clock_padding = 1 0clock_background_id = 0clock_rclick_command = orage
Tooltipstooltip = 0tooltip_padding = 2 2tooltip_show_timeout = 0.7tooltip_hide_timeout = 0.3tooltip_background_id = 1tooltip_font = sans 10tooltip_font_color = #000000 80

Mousemouse_middle = nonemouse_right = closemouse_scroll_up = togglemouse_scroll_down = iconify
Batterybattery = 0battery_low_status = 10battery_low_cmd = notify­send "battery low"battery_hide = 98bat1_font = sans 8bat2_font = sans 6battery_font_color = #FFFFFF 74battery_padding = 1 0battery_background_id = 0
End of config
I do NOT recommend using the “Tint Wizard”
program to control and change your settings.
Rather, I recommend editing the tint2rc file by hand,
by loading it into Geany – or any other plain text
editor. From my personal experience, I can attest to
the fact that the Tint Wizard program is quite
capable of producing corrupt tint2rc files. While a
good idea, it doesn’t seem to be well implemented.
You will have more consistent results by hand
editing the file – at least for now, until the Tint
Wizard bugs are worked out.

Background IDs
The very first thing that is listed are the background
definitions. We can define as many background
definitions as we feel are necessary. In the default
setup of tint2 in Openbox, there are three

Openbox: Tint2 vs Lxpanel

19

backgrounds defined. These blocks of settings
determine whether or not the particular background
has rounded corners, border widths, and the colors
of items.
Even though all of our background definitions set the
border width to zero, we must also set a color
definition for the border. Likewise, we also set a
color definition for the background. All color
definitions are preceded by a “#” symbol, followed by
the hexidecimal color code for the color we want to
use. The number after the hexidecimal color
definition sets the transparency for that color, where
100 is opaque and zero is completely transparent.
As we go through each of the other sections, you will
note that each section specifies which background
ID to use when it is drawn on your screen.

Panel
The panel section of the tint2rc file determines much
of the overall appearance of the tint2 panel. The first
item, panel_monitor = all, tells tint2 to draw the panel
on all the monitors it finds connected to your
computer. You can also specify it to draw the tint2
panel on specific monitors connected to your
computer, should you have multiple monitors
connected.
The second item, panel_position, tells tint2 where to
draw the panel on your screen. The default value, at
least in the PCLinuxOS Openbox installation, is to
draw the panel at the bottom of your screen, in a
horizontal aspect, and centered on your screen.

The panel_size parameter tells tint2 the width and
height of your panel. My panel is set to occupy 94%
of the width of my screen, with a height of 30 pixels.
Setting your width to “0” will cause the tint2 panel to
occupy the full width of your screen.
Panel_margin tells tint2 whether or not to employ a
margin in relationship to your monitor edge. The
defaults in PCLinuxOS Openbox are “0 0” and place
the tint2 panel up against the screen edge, without a
margin. However, if you want to insure that there is a
little “breathing room” around you panel, specify how
many pixels you want your horizontal margin (the
first number), and how many pixels you want your
vertical margin to be (the second number), in
relationship to the nearest screen border as defined
in the panel_position parameter.
The fifth item, panel_padding, tells tint2 the
horizontal, left­to­right, padding (the first number),
the vertical padding (the second number), and the
horizontal spacing (the third number).
Panel_dock tells tint2 whether or not to place the
tint2 panel in the window manager’s dock. The
default value is “0,” which causes tint2 to bypass the
Openbox dock.
The seventh item, wm_menu, determines whether or
not the default window manager menu is displayed
when you right click on the tint2 panel. The default
value is “0.” Changing this to “1” may be useful,
depending on how you work with your computer.
The panel_layer setting allows you to specify if the
panel is drawn on the top layer, the bottom layer, or

is treated like a normal window. The default value in
PCLinuxOS Openbox is “top.”
Finally, the panel_background_id parameter tells
tint2 which of the previously defined background IDs
to use when drawing the panel. In our case, that
would be to use the first background ID that we
defined, with a black background color and an
opacity of 60%, and a white border color, with an
opacity of 16%.

Panel Autohide
As you might expect, the “panel autohide” section of
the tint2rc file controls the autohide capabilities of
the tint2 panel. By default, the tint2 panel’s ability to
autohide is turned off (autohide = 0). When the tint2
panel is in this state, the rest of the settings have no
effect. Changing it to “autohide = 1” will cause the
tint2 panel to autohide, and only appear when you
mouse over its intended location.
When autohide is activated, the other settings
become active. The autohide_show_timeout (default
0.3 seconds) specifies how many seconds (or tenths
of a second) delay before the panel is shown when
you move your mouse over the intended location of
the tint2 panel. The autohide_hide_timeout
parameter (default of 2 seconds) specifies how
many seconds the panel is shown after you move
your mouse outside the boundaries of the revealed
panel, before it is hidden again. The autohide_height
parameter (default of 2 pixels) specifies how many
pixels the hidden panel occupies on your screen.

Openbox: Tint2 vs Lxpanel

20

The last setting in this section of the tint2rc file,
strut_policy, actually belongs to the panel section.
STRUTs are used by the Openbox to decide the
size of maximized windows. It determines if
'maximized windows' should follow tint2 size
(follow_size, and default) or use the minimum size
(minimum), or use the screen size (none).

Taskbar
Here, we define the appearance of the taskbar
section of the tint2 panel. The taskbar_mode
settings, as they exist in PCLinuxOS Openbox,
default to showing the icons only from the current
desktop (taskbar_mode = single_desktop). However,
changing “single_desktop” to “multi_desktop” will
show all of the icons of running applications on all
desktops.
Given that tint2 has no pager, per se, changing the
setting to “multi_desktop” mimics pager­like activity,
since all of the running applications are grouped on
the taskbar by desktops. Additionally, you can click
and drag applications from one desktop to another,
plus you can switch desktops simply by clicking your
mouse on the corresponding section of the taskbar.
The taskbar_padding setting determines the
horizontal_left_right padding (pixels from the
horizontal edge of the taskbar), vertical padding
(pixels from the top and bottom edge of the taskbar),
and the horizontal spacing between items on the
taskbar. The default value in PCLinuxOS Openbox
is “2 3 2,” providing two pixels of horizontal padding
from the horizontal edge of the taskbar, three pixels

of padding between the upper and lower edge of the
taskbar, and two pixels of spacing between items.
The taskbar_background_id setting determines
which background to use when drawing the taskbar
on your computer screen, while
taskbar_active_background_id determines which
background ID to use for the current desktop. If you
changed the taskbar_mode to “multi_desktop,” you
won’t notice any effect from the
taskbar_active_background_id setting.

Tasks
The tasks section of the tint2rc file controls how
each of the tasks are drawn on the taskbar. To start
off, the urgent_nb_of_blink setting tells the tint2
panel how many times to blink a taskbar element
when urgent attention is requested. The task_icon
and task_text settings determine, respectively, if an
icon or text is displayed on the taskbar item. By
default, both items are displayed in PCLinuxOS
Openbox. The task_centered setting determines if
the task name is centered (1, the default) or not (0).
To economize space on the taskbar, it would be
quite easy to mimic the KDE Smooth Tasks
plasmoid by choosing to display an icon only on the
taskbar by turning off the display of the text label –
and altering one other setting, which we’ll mention
here shortly.

The task_maximum_size determines the maximum
size of the task item. It consists of two numbers, the
width and height. By default in PCLinuxOS
Openbox, these are set to 140 pixels wide and 35
pixels tall. If you like displaying the text on your task
buttons, as is the usual case, these “measurements”
typically work out fine. But if you want to mimic the
KDE Smooth Tasks plasmoid’s way of displaying
running tasks on your taskbar, change the
task_maximum_size width to 40 pixels, turn off the
text (task_text = 0), and your tint2 panel will look
much like the screenshot above.
With the task_padding setting, we can control the
horizontal and vertical padding of the individual task
buttons displayed on the taskbar. The rest of the
settings in the tasks section of the tint2rc file deal
with which background ID to use to display tasks in
their various states (active, urgent and iconified).

Task Icons
The task icons section tells tint2 how to display icons
on the panel. The task_icon_asb setting controls all
icons that don’t fall into the other designated special
categories. The task_active_icon_asb setting
controls how the icon of the active window is
displayed. The task_urgent_icon_asb setting
controls how an icon is displayed when a window is
requesting your urgent attention. The
task_iconified_icon_asb setting controls how the

Tint2 panel with tasks set up to mimic KDE Smooth Tasks plasmoid

Openbox: Tint2 vs Lxpanel

21

icons of an iconified (minimized) window are
displayed.
Each setting has three sets of numbers, separated
by a space. The numbers indicate the alpha
(transparency) of the icon (0 to 100), followed by the
saturation (­100 to 100), then the brightness (­100 to
100).

Fonts

The fonts section specifies how tint2 displays fonts.
To save space on my tint2 panel, I have the text
turned off. If you do the same, none of the following
settings will really have any effect. If, however, you
prefer to see a more traditional panel and choose to
have the text of the window’s title bar displayed on
your panel items, then you can customize how tint2
displays that text.
The task_font setting tells tint2 which font to use,
any optional special style instructions (bold, italic or
bolditalic), followed by the size of the font. The
task_font_color setting sets the color of the font
(specified with a “#” sign, followed by a 6 character
hexidecimal color code), a space, then the opacity of
the text color (0 to 100, with 100 being opaque and 0
being transparent).
The task_active_font_color sets the color and
opacity of the text for the active window icon, while
task_urgent_font_color and
task_iconified_font_color sets the color and opacity
of the text for icons of windows requiring your

attention and icons of iconified windows,
respectively.
The font_shadow setting (0 or 1) tells task2 whether
or not to draw a shadow under the text displayed on
the panel.

System Tray
As the name indicates, this section controls the
system tray area of the panel. The systray setting
allows you to set whether the system tray is
embedded in the tint2 panel (set with a value of 1),
or whether the system tray is disabled (set with a
value of 0), and is not displayed at all. The
systray_padding uses three sets of numbers,
separated by a space, that govern the horizontal left­
to­right padding, vertical padding, and horizontal
spacing.
The systray_sort setting allows you to tell tint2 the
ordering to use when displaying the icons of the
system tray. In Openbox, the default value is
“ascending,” which means that the icons will be
placed in alphabetical order, based on the name of
the application, from A to Z, left to right. The other
options are: descending (reverse alphabetical
order), left2right (display icons from left to right,
based on the order in which the applications are
loaded), and right2left (display icons from right to
left, based on the order in which the applications are
loaded).
With the systray_background_id setting, you control
which of the previously defined panel background

definitions to use when drawing the system tray. The
systray_icon_size setting sets the size, in pixels, to
draw the icons on the system tray. The
systray_icon_asb, as with the previously discussed
task_icon_asb settings, sets the alpha, saturation
and brightness levels to use when displaying the
icons in the system tray.

Clock
Just as its name suggests, the Clock section of the
tint2rc file controls how tint2 displays clock
information on the tint2 panel. The format for the
clock information displayed uses the format of
strftime. Refer to the manual page at the previous
link.
The time1_format setting controls the formatting for
the top item displayed in the clock, while the
time2_format setting controls the formatting for the
bottom item displayed in the clock. By default, in
PCLinuxOS Opbenbox, those correspond to the time
on the top, followed by the day and date on the
bottom. To eliminate either line of the clock display,
simply comment out the line you don’t want
displayed by placing a # at the beginning of the line.
Commenting out both lines will prevent the clock
from being displayed at all on your tint2 panel.
The time1_font and time2_font settings allow you to
specify what font, style (bold, italic or bolditalic) and
fontsize to use to display your clock information. The
clock_font_color allows you to set the hexidecimal
font color and the opacity of the text. The
clock_padding sets how many pixels, horizontal and

Openbox: Tint2 vs Lxpanel

http://www.manpagez.com/man/3/strftime/

22

vertical, is padded around the clock information
when it is displayed. The clock_background_id
setting tells tint2 which of the predefined
backgrounds to use when displaying the clock
information.
The clock_rclick_command setting tells tint2 what
command to execute when you right click on your
clock. The default in PCLinuxOS Openbox is to open
the Xfce calendar program, called Orage. However,
Orage is not installed in my default installation of
Openbox. It should be easy enough to install it via
Synaptic, though.
One setting that is not in the default PCLinuxOS
Openbox configuration of tint2 is the clock_tooltip
setting. Here is the entry on my Openbox
installation:
clock_tooltip = %r, %A, %B %d, %Y
With the addition of this line to the Clock section of
your tint2rc file, the time, day of week, month, day
and year will appear as a tooltip whenever you hover
your mouse over the clock.

Tooltips
The tooltips section of the tint2rc file controls the
display of the tooltips on your tint2 panel, if
activated. Setting tooltips = 1 turns tooltips on, while
tooltips = 0 turns them off and prevents their display.
The tooltip_padding, tooltip_background_id,
tooltip_font, and tooltip_font_color settings work

exactly like their counterparts in the other sections.
However, there are two other settings that are
unique to the display of tooltips. The
tooltip_show_timeout setting sets the number of
seconds of delay to show the tooltip when hovering
your mouse cursor over an item on the tint2 panel.
The default in PCLinuxOS Openbox is 0.7 seconds.
The tooltip_hide_timeout setting sets the number of
seconds before the tooltip disappears when your
mouse leaves the item on the tint2 panel. The
default in PCLinuxOS Openbox is 0.3 seconds.

Mouse
The mouse section of the tint2rc file contains
instructions for how your tint2 panel should respond
to various mouse clicks. The mouse action choices
should be rather obvious by reading their
description. Each of the four mouse actions can
have any of the following as their setting:
close: close the task
toggle: toggle the task
iconify: iconify the task
toggle_iconify: toggle or iconify thetask
maximize_restore: maximized or minimizedthe task
desktop_left: send the task to thedesktop on the left

desktop_right: send the task to thedesktop on the right
next_task: send the focus to nexttask
prev_task: send the focus toprevious task
The default right click action in PCLinuxOS Openbox
is to close the task. Since I’m used to right clicking
on a panel task to access its window menu in all the
other panel applications, I found myself inadvertently
closing applications that I wanted to remain open.
So, I changed the right click mouse action to
toggle_iconify. This way, the application remained
opened, and it only changed its state from visible to
iconified – or vice versa.

Battery
Unfortunately, I could not test the battery section of
the tint2rc file. Whenever I tried to activate the
battery notification, I received an error in my open
terminal session that read:
ERROR: battery applet can't openenergy_now
After this message, tint2 exited with a segmentation
fault. Instead, I’m using the Gnome Power Manager
to monitor the battery states on my laptop.

Openbox: Tint2 vs Lxpanel

23

Summary
Tint2 makes a very suitable panel replacement. It’s
lean, mean, stable and attractive. You will find it
easy to control, as well. There are reports of users
running multiple panels on a desktop, and tint2 can
be made to load up a custom resource file. Simply
issue the command tint2 mysecondpanel.tint2rc,
where mysecondpanel.tint2rc is the resource file that
contains the information that controls the behavior of
the second panel.
Feel free to explore all the options of tint2, by
checking out its configuration page. You will find
some entries that don’t work with our current version
of tint2 in the PCLinuxOS repository. The version in
our repository is the latest stable version, and there
are some instructions on the configuration page that
apply only to the beta version.

The
PCLinuxOS
Magazine

Created with
Scribus 1.3.9

Screenshot ShowcaseScreenshot Showcase

Posted by ferry_th on January 6, 2012

Openbox: Tint2 vs Lxpanel

http://www.scribus.net
http://code.google.com/p/tint2/wiki/Configure

24

by Darrel Johnston (djohnston)

Feh is an imlib2 based image viewer. It can also be
used to manage your desktop wallpaper. It’s not
used for that purpose very often because most
desktop environments have their own wallpaper
managers. Two exceptions are Fluxbox and
Openbox.

In the PCLinuxOS community remaster of Openbox,
Melodie has chosen to use the PCManFM file
manager to manage the wallpaper. However, if you
look in the ~/.config/openbox directory, you will see
the autostart.sh file which is run every time you log
into an Openbox session. In the file, she has a
couple of commented lines for using feh to display a
wallpaper. Let’s take a look at that section of the file.

a random desktop background. There can be one
only, it
works with the same command line. I insist :
uncomment ONE LINE ONLY !
tip : take the second one if you have several
wallpapers and want a different
one at each session.
feh ­­bg­scale "$(find ~/.local/wallpapers ­type f)" &
feh ­­bg­scale "$(find ~/.local/wallpapers ­type f
|sort ­R |tail ­1)" &

Let’s examine what each of the two options does.
The first example is the simpler one. She uses the
find command to find a file in (~ = your home
directory) the ~/.local/wallpapers directory. The
resulting string value is read by feh. The ­­bg­scale

parameter tells feh to scale the image to the desktop
size. Possible parameters are:
­­bg­center
Center the file on the background. If it is too small, it
will be surrounded by a black border
­­bg­fill
Like ­­bg­scale, but preserves aspect ratio by
zooming the image until it fits. Either a horizontal or
a vertical part of the image will be cut off
­­bg­max
Like ­­bg­fill, but scale the image to the maximum
size that fits the screen with black borders on one
side.
­­bg­scale
Fit the file into the background without repeating it,
cutting off stuff or using borders. But the aspect
ratio is not preserved either
­­bg­tile
Tile (repeat) the image in case it is too small for the
screen
Note that if you have more than one file in the
~/.local/wallpapers directory, you will get an error:
“feh ERROR: Couldn’t load image in order to set bg”.

The second option also uses the find command to
find a file in the ~/.local/wallpapers directory. But this
option is for more than one wallpaper image. The list
of files is passed to the sort command, and the ­R
parameter sorts the list in a random order. The
randomly sorted list is then passed to the tail

command, which finds the last file in the sorted list.
The string value of the resulting file is read by feh,
which scales the image to the desktop size. Using
this option will give you a randomly selected
wallpaper every time you login to an Openbox
session.

Suppose you want to cycle the wallpaper every few
minutes or hours. To rotate the wallpaper randomly,
create a script with the code below (for example,
wallpaper.sh). Make the script executable (chmod +x
wallpaper.sh) and call it from ~/.xsession. You can
also put the source directly in ~/.xsession instead of
in a separate file. Change the "15m" delay as you
please (see man sleep for options).
#! /bin/sh
while true; do

feh --bg-scale "$(find
~/. local/wallpapers -type f | sort -R
| tail -1) " &

sleep 15m
done

Another way of doing it is shown below.
#! /bin/sh
while true; do

find ~/. wallpaper -type f -name
' *. jpg' -o -name ' *. png' -print0 |

shuf -n1 -z | xargs
-0 feh --bg-scale

sleep 15m
done

After feh has been run for the first time, it creates the
hidden file .fehbg in your home directory. If you wish

Openbox: Using feh To Manage Your WallpaperOpenbox: Using feh To Manage Your Wallpaper

25

to use the same wallpaper each time you login, you
can add the line sh ~/.fehbg & to your
~/.config/openbox/autostart.sh file.

Note that if you want to use feh to manage your
wallpaper in the Openbox edition, you must
comment the line /usr/bin/pcmanfm ­­desktop &
contained in the ~/.xsession file. Most of the
instructions I’ve seen say to edit ~/.xinitrc.
Commenting out the pcmanfm line in the ~/.xinitrc
file did nothing for me. Also note that I’m using the
openbox­bonsai­2010.11 version.

Openbox: Using feh To Manage Your Wallpaper

Screenshot ShowcaseScreenshot Showcase

Posted by Ferdes Fides on December 23, 2011

http://www.tuxmachines.org
http://ibiblio.org
http://www.pclinuxos.com

26

by Paul Arnote (parnote)

Unless you are running the LXDE Panel (lxpanel) on
your copy of Openbox (or even if you are running
lxpanel), the “traditional” way of accessing the
applications menu in Openbox is by right clicking on
an empty spot of your Openbox desktop.
Fortunately, it’s quite easy to tweak and tune your
Openbox right click menu.
The information for the Openbox right click menu is
stored in the menu.xml file, located in your
/home/username/.config folder. For a brief
description of the XML file format, take a look at the
PCLinuxOS Magazine Openbox article on editing
your rc.xml file. Use the PCLinuxOS Openbox
default text editor Geany to edit any of your
Openbox configuration files.
Below is a copy of the menu.xml file from my
installation of Openbox:
<?xml version="1.0" encoding="UTF­8"?>
<openbox_menu
xmlns="http://openbox.org/3.4/menu">

<menu id="desktop­app" label="Applications"
execute="openbox­menu ­x ­t 'sakura ­e'" />

<menu id="openbox­menu" label="OpenBox">
<item label="ObConf">

<action
name="Execute"><command>obconf</command></ac
tion>

</item>

<item label="Reload Openbox">
<action name="Reconfigure" />

</item>
</menu>
<menu id="preferences" label="Preferences">

<item label="Desktop Prefs">
<action

name="Execute"><command>pcmanfm ­­desktop­
pref</command></action>

</item>
<item label="No effects">

<action name="Execute">
<execute>

~/.config/openbox/scripts/xcompmgr.sh unset
</execute>

</action>
</item>
<item label="Transparency">

<action name="Execute">
<execute>

~/.config/openbox/scripts/xcompmgr.sh set
</execute>

</action>
</item>
<item label="Transparency, fadings">

<action name="Execute">
<execute>

~/.config/openbox/scripts/xcompmgr.sh setshaded
</execute>

</action>
</item>
<item label="Transparency, fadings,

shadows">
<action name="Execute">

<execute>
~/.config/openbox/scripts/xcompmgr.sh
setshadowshade

</execute>
</action>

</item>
</menu>
<menu id="root­menu" label="Openbox 3">

<separator label="Menu" />
<menu id="desktop­app" />
<separator />
<item label="Firefox">

<action
name="Execute"><command>firefox</command></act
ion>

</item>
<item label="File manager">

<action
name="Execute"><command>pcmanfm</command></
action>

</item>
<item label="Terminal"><action

name="Execute">
<command>gnome­

terminal</command></action>
</item>

<item label="Run Program..."><action
name="Execute">

<command>gnome­run­
dialog</command></action>

</item>
<separator />
<menu id="client­list­menu" />
<menu id="openbox­menu" />

<menu id="preferences" />
<separator />
<!­­<item label="Exit">

<action name="Exit" />
</item>­­>

<item label="Log Out">
<action name="SessionLogout">

<prompt>yes</prompt>
</action>

Openbox: Customize Your Right Click MenuOpenbox: Customize Your Right Click Menu

27

</item>
<item label="Reboot">

<action name="Execute">
<execute>dbus­send ­­system ­­

dest=org.freedesktop.Hal ­­print­reply
/org/freedesktop/Hal/devices/computer
org.freedesktop.Hal.Device.SystemPowerManagement
.Reboot</execute>

</action>
</item>

<item label="Shutdown">
<action name="Execute">

<execute>dbus­send ­­system ­­
dest=org.freedesktop.Hal ­­print­reply
/org/freedesktop/Hal/devices/computer
org.freedesktop.Hal.Device.SystemPowerManagement
.Shutdown</execute>

</action>
</item>
<separator />

<item label="Suspend">
<action name="Execute">

<execute>dbus­send ­­system ­­
dest=org.freedesktop.Hal ­­print­reply
/org/freedesktop/Hal/devices/computer
org.freedesktop.Hal.Device.SystemPowerManagement
.Suspend int32:0</execute>

</action>
</item>

</menu>
</openbox_menu>

Below is a the basic menu that appears when I right
click on my Openbox desktop:

When I hover my mouse over the “Applications”
menu, the menu expands, as shown in the
screenshot (above, right):
You most likely won’t want to mess much with the
“Applications” entry of your installation. This portion
of the menu is controlled more by the xdg menu
entries, and you can cause chaos to reign by
messing around here. The real beauty of the
menu.xml file is the ability to customize the rest of

your Openbox menu. My menu, depicted above, has
been tweaked and customized by me.

After the first separator in the menu, you have a
“quick launch” area. You can define applications that
you may want quick and ready access to in this
area. The changes I made here was to call Gnome
Terminal, instead of Sakura, which is the default
terminal application in the PCLinuxOS Openbox
release. Since Gnome Terminal was pre­installed on
my Openbox installation, it was a simple matter of
changing the line in menu.xml that executes
“sakura” to “gnome­terminal.”

Openbox: Customize Your Right Click Menu

28

I further expanded the “quick launch” area of my
Openbox menu by adding in the “Run Program...”
entry. Openbox, as it’s installed from the Live CD,
doesn’t have any way of accessing a “Run
Program...” dialog box. So, I installed “gnome­run­
dialog” from Synaptic, a Python/Gtk+ application that
provides you a “Run Program...” dialog box.
Adding it to the “quick launch” section of my
Openbox menu was as easy as adding these three
lines to my menu.xml file:
<item label="Run Program..."><actionname="Execute"><command>gnome­run­dialog</command></action></item>
To increase the usefulness of the “Run Program...”
entry, I also subsequently added a keybinding to
launch “gnome­run­dialog” from the keyboard, with
the press of the Alt + F2 key combination, to my
rc.xml file.

Getting “fancy”
You can just as easily create top level menus
populated with sub­menu items. Because of various
issues, I tend to switch between the use of Firefox
and Chromium browsers for different tasks that I
routinely perform on my computers. For example, I
prefer to use Chromium for working in Google Docs
(the vehicle preferred for magazine article
submission). Despite its larger size, Chromium
experiences fewer “freezes” than Firefox, which is a
problem I’ve experienced with Firefox ever since

version 3.2. However, I prefer to use Firefox for the
bulk of my web browsing.
As such, I prefer to have both Chromium and Firefox
listed in the “quick launch” area of the Openbox right
click menu. To keep things neat and tidy (and to
prevent the “quick launch” area from becoming too
long and unweildly), I prefer to have a top level
menu that, when selected, allows me to choose
between Firefox and Chromium. It’s easier than you
might think. Here’s the new “snippet” from my
altered menu.xml file, inserted right after the line that
reads <menu id="desktop­app" />:
<menu id="browsers" label="Browsers">

<item label="Firefox">
<action

name="Execute"><command>firefox</command></act
ion>

</item>
<item label="Chromium">

<action name="Execute"><command>chromium­
browser</command></action>

</item>
</menu>
To start with, you define a new “top level” menu with
the <menu …> tag. Be sure to give it a unique menu
ID. Here, I called mine “browsers,” which I knew was
not already in use. What appears after “label=” is the
text that appears in the menu.
Next, add the menu items that you want to populate
that top level menu, as I have done with the “item”
entries for Firefox and Chromium. Finally, close out
the top level menu with the </menu> tag.

If you want to get even fancier – and more complex
– you can further define sub menus for top level
menus, with each sub menu containing additional
sub menus and menu items. How fancy and just
how complex you want to make your menu additions
is entirely up to you. However, I subscribe to the
K.I.S.S. principle (Keep It Super Simple), and this is
as complex as I want to get.

Summary
You will find that editing your Openbox menu.xml file
will add extra functionality to your Openbox
installation. Editing, changing and expanding your
Openbox menu is very easy to do, and gives you the
opportunity to further customize Openbox to work in
a manner that more closely matches the way that
you work with your computer.

Openbox: Customize Your Right Click Menu

http://www.enkiconsulting.net/
http://www.linfx.com

29

by Meemaw

“Which Openbox Live CD should I use? What are
the differences?”
In this article we’ll explore the differences between
the full Openbox Live CD and the Openbox­Bonsai
mini Live CD. Just like the other ‘mini’ versions of
PCLinuxOS, Openbox­Bonsai is a smaller Live CD,
with only a few needed programs to get you started.
You can pick and choose what programs you want
and not have to use what someone else has chosen.
For this article, we will use the most recent official
releases, Openbox­Bonsai­2011.03 and Openbox­
2010.11.

Bonsai
Bonsai is the minimum version of Openbox. The ISO
is 266 MB, and contains just a bare minimum of
programs to get you started in the Openbox
experience. The rest you can pick and choose for

yourself, via Synaptic. Programs on the Live
CD/default installation include:
Midori and Firefox web browsers
flPhoto Photo Viewer
LibreOffice Manager
PCManFM File Manager
Geany (Text Editor)
File Roller (Archiver)
HTop system monitor
NetApplet
Sakura and XTerm Terminals
The current official version of Bonsai includes
lxpanel as the default panel. Rumor has it that in the
upcoming release of Bonsai, it will use tint2 as the
default panel.
You can see here the menu structure and the
choices that Bonsai offers in the ‘More Applications’
section.

Openbox Full
The full­size Live CD of Openbox is 685 MB and,
naturally, includes loads more programs.
In the Internet section, programs include:
Firefox and Midori web browsers
Sylpheed
Gajim and XChat
Deluge
Pino
Filezilla
Transmission
In the Graphics section you see:
Fotoxx
Gimp
Rapid Photo Downloader
flPhoto, GQView, GPicView
Screenie
XSane
The Office section contains:
OpenOffice Manager
Galculator
Gnumeric
Abiword
Sunbird and Osmo Organizers
Evince Document Viewer
For file management, editing and monitoring you will
see:
PCManFM and Thunar File Managers

Openbox Live CDs: A ComparisonOpenbox Live CDs: A Comparison

30

Geany Text Editor
HTop
EeeControl
NetApplet
System Info
Gnome, Root, Sakura, Urxvt and XTerm Terminals
XArchiver
Gnomebaker CD Burning program
There is only one program in the Audio section:
Audacious
The Video section includes two:
Coriander
SMPlayer
You also have extras:
Stellarium
Money Manager Ex
5 or 6 Games
The current full version of Openbox uses tint2 as the
panel. Lxpanel is scheduled to replace tint2 as the
default panel in the forthcoming new version.
You can see here the menu structure and the
choices that the full version of Openbox offers in the
‘More Applications’ section. Notice that it includes
the Printing section which is not in Bonsai.
Stellarium is accessible in the Education as well as
the Sciences section, and that the Finances section
is where you will find Money Manager Ex. Also, the
configuration contains many more programs than
are on the Bonsai iso (top center).

New versions of Openbox and Openbox­Bonsai are
in the works now, and should be released soon. You
know the PCLinuxOS mantra: It’ll be released when
it’s ready.

Openbox Live CDs: A Comparison

1. All the contents of the NEW PCLinuxOS Magazine are only
for general information and/or use. Such contents do not
constitute advice and should not be relied upon in making (or
refraining from making) any decision. Any specific advice or
replies to queries in any part of the magazine is/are the
person opinion of such experts/consultants/persons and are
not subscribed to by the NEW PCLinuxOS Magazine.

2. The information in the NEW PCLinuxOS Magazine is
provided on an "AS IS" basis, and all warranties, expressed
or implied of any kind, regarding any matter pertaining to any
information, advice or replies are disclaimed and excluded.

3. The NEW PCLinuxOS Magazine and its associates shall not
be liable, at any time, for damages (including, but not limited
to, without limitation, damages of any kind) arising in contract,
rot or otherwise, from the use of or inability to use the
magazine, or any of its contents, or from any action taken (or
refrained from being taken) as a result of using the magazine
or any such contents or for any failure of performance, error,
omission, interruption, deletion, defect, delay in operation or
transmission, computer virus, communications line failure,
theft or destruction or unauthorized access to, alteration of, or
use of information contained on the magazine.

4. No representations, warranties or guarantees whatsoever are
made as to the accuracy, adequacy, reliability, completeness,
suitability, or applicability of the information to a particular
situation.

5. Certain links on the magazine lead to resources located on
servers maintained by third parties over whom the NEW
PCLinuxOS Magazine has no control or connection, business
or otherwise. These sites are external to the NEW
PCLinuxOS Magazine and by visiting these, you are doing so
of your own accord and assume all responsibility and liability
for such action.

Material Submitted by Users
A majority of sections in the magazine contain materials submitted by
users. The NEW PCLinuxOS Magazine accepts no responsibility for
the content, accuracy, conformity to applicable laws of such material.

Entire Agreement
These terms constitute the entire agreement between the parties with
respect to the subject matter hereof and supersedes and replaces all
prior or contemporaneous understandings or agreements, written or
oral, regarding such subject matter.

Disclaimer

http://www.distrowatch.com

31

by Paul Arnote (parnote)

Since Openbox doesn’t have a panel of its own
(borrowing lxpanel from LXDE or using Tint2
instead), it almost begs for us to use one of the
quick launch bars that are out there. Plus, if you are
using Tint2 as your panel, it does not currently allow
launchers to be used.
Fortunately, there are choices under PCLinuxOS for
a launch bar for your Openbox desktop. All are
relatively lightweight, and give your desktop some
flash and panache. All mimic (to varying degrees)
the Mac OS­X actions of “zooming” when you mouse
over the individual icons.
What are they called? Well, they are adeskbar,
wbar and Cairo­Dock. Of the three, adeskbar is the
lightest weight launch bar, weighing in at only 472
KB, while wbar fills in the middle, weighing in at 842
KB. Cairo­Dock, on the other hand, weighs in at 7.2
MB, with another 8.5 MB for the required plug­ins,
and taking up another 14.1 MB for the optional
themes. As you might imagine, Cairo­Dock offers the
flashiest effects on your desktop. Your choice will be
somewhat dictated by how fancy you want your
launch bar to be, how fast your computer is, how
much RAM you have, and how much hard drive
space you have. Obviously, if neither of those are of
any concern to you, then the choice falls strictly in
the arena of aesthetics and personal preference.

Cairo­Dock
The “flashiest” of the three, by far, is Cairo­Dock.
Just looking at it, you get the impression that there is

more to it. With the default installation of Cairo­Dock
from Synaptic, you get reflections of the icons on the
bar beneath them. When you put it “into motion,” by
moving your mouse over the individual icons, the
icons “zoom,” but can just as easily be made to
rotate and do other “tricks.” Being the largest
download of the three launch bars, Cairo­Dock is
also the most capable.
On my IBM Thinkpad T23 with Openbox installed
(Pentium III, 512 MB RAM, 8 MB video RAM with no
OpenGL capabilities), Cairo­Dock consumes very
few resources, despite being the largest in file size.
Even while activated by moving my mouse over the
launch bar, Cairo­Dock consumed no more than 9%
of the CPU and no more than 8% of my RAM.
Cairo­Dock is divided up into sections. The left­most
section contains your launchers. The middle section
(between the dotted lines) contains the icons of your
minimized applications. The right­most section
contains the icons of your Cairo­Dock plug­ins.
Arranging your icons on Cairo­Dock is as simple as
dragging and dropping the icons to where you want

them, with one caveat: plug­ins cannot co­mingle
with launchers, and launchers cannot co­mingle with
plug­ins.

When I first installed Cairo­Dock from Synaptic, it
contained a host of Gnome­specific applications that
I do not run on Openbox. Fortunately, it’s as easy as
right clicking on the icon you do not want, and
selecting “Remove this launcher” or “Remove this
applet.”

My customized Cairo­Dock without a mouse over.

My customized Cairo­Dock with the mouse hovering over one of the icons.

Openbox: Add A Quick Launch BarOpenbox: Add A Quick Launch Bar

32

Similarly, it’s just as easy to add a launcher or
applet. To add a launcher, right click on the left side
of the Cairo­Dock, go to the “Add” menu, then select
“Add a custom launcher” from the menu. A new icon
will be placed in the launcher area.

Right click on the new icon, then “Modify this
launcher.” You will then be able to give the new
launcher a name, specify the command you want to
run, along with the icon you want to use to represent
your new launcher.
When it comes to adding applets to Cairo­Dock, it is
almost as easy. Right click anywhere on your Cairo­
Dock, select the Cairo­Dock menu item, then
“Configure.” You will see the window above. Select
the “Add­ons” tab, and select the applets you want
to display on your Cairo­Dock.

Once you’ve added the applet, you can right click on
it and select “Configure this applet.” When you do,
the window shown two screenshots ago will be
displayed. There, you can set display options for the
selected applet.
As you can see in the previous screen shot, there
are lots of options for Cairo­Dock, divided into four
tabs. Feel free to explore the options. After all, you
can always change them back if you don’t like them.
To make it easier to remember what you changed, it
might be prudent to only change one thing at a time,
just in case you don’t like that particular selection.

wbar
With wbar, you get a Mac OS­X like launch bar that
occupies a minimum of space, while remaining
relatively light on resources and disk space. While
wbar does not have all the options that Cairo­Dock
has, lacking additional plug­in applets that add some
additional functionality, it’s still a quite capable
launch bar. It does one thing, and does it well.
On my Thinkpad T23 running Openbox, wbar
doesn’t even show up in the list of applications when
I run the top command in a terminal window. When I
mouse over wbar, it then shows up in the list of
applications in the top command, consuming
approximately 12% of the CPU and approximately
10% of the available memory, a bit more than Cairo­
Dock, despite its smaller file size.
Like with Cairo­Dock, wbar came set up out of the
box for some Gnome applications that I never use.
Configuring wbar is relatively easy, and it comes
with the configuration tool included on wbar. In fact,
it’s the sixth icon from the right in the screen shot
below.
Clicking on the configuration icon will bring up the
screen shot (next page). Notice the three tabs at the
top of the dialog box.

My customized wbar with the icons zooming from a mouse over.

Openbox: Add A Quick Launch Bar

33

To add a new icon toyo
ur wbar, click on the
“New” button. Provide
a title for your new
launcher, the
command to execute,
and the icon file to use
to represent your new
launcher. If you’re not
sure where icon files
are stored on your
system, they are
typically found in

/usr/share/icons and /usr/share/pixmaps. There are
even some that come with wbar, found in the
/usr/share/pixmaps/wbar directory.
When you select the “Edit” button, the same dialog
box is displayed, with the current information already
filled into the fields. Simply make your changes and
select the “Accept” button. Then, select the “Reload”
button in the configuration dialog box to make your
new (or edited) launcher visible.
You need to be aware, however, of one limitation of
wbar when selecting your icons. Currently, wbar

cannot display *.svg icon files. Rather, it can only
display *.png icon files.
Under the “Preferences” tab, you can set the font
and font size you want wbar to use when it displays
the text of the icon when you mouse over, as well as
the background image you want wbar to use. Among
other things, you can also set wbar’s screen
position.

Under the “Effects” tab, you can set the icon size,
the spacing between the icons, the zoom factor (2.0
is double size), the jump factor (the higher the
number, the more “elevated” the icon is above the

Openbox: Add A Quick Launch Bar

34

others when you mouse over the icon), and a
number of other items.
Whenever you make any changes, be sure to hit the
“Reload” button to make your changes take effect in
wbar.

Adeskbar
Adeskbar not only has the smallest file size, but it’s
also the lightest when it comes to using computer
resources. Nothing I did could get adeskbar to show
up in the list of applications when I ran the top
command in a terminal. It didn’t show up when it was
idling, and it did not show up when I moused over
the icons, either.
To be perfectly honest, I originally wasn’t going to
include adeskbar in this article. The first time I
launched it from a terminal session, it was hidden
behind Cairo­Dock, which I had forgotten to stop
before launching adeskbar. So, I had mistakenly
thought that it was not running. Mea culpa. It wasn’t
until I moved my tint2 panel to the top of my screen
and I was running wbar that I decided to give it
another try. Imagine my surprise when adeskbar
appeared!
When you first launch adeskbar, it looks a bit
sparse. Only the menu, audio volume control, clock,
a pair of separators and the session control objects

are present. It is between the separators where you
will want to place your launcher icons.

Configuring adeskbar is quite easy. Simply right click
on the launch bar and select “Preferences.” You will
see the screenshot above.
Under the first tab, “Preferences,” you can set the
size of the launch bar, the “style” used to display
adeskbar, what icon effects you want to use,
whether it’s always visible or if it autohides, and a
few other settings which should be fairly self­
explanatory.

Under the “Position” tab, you can select where on
your screen you want adeskbar to appear.
Under the “Launchers” tab, you can start to fill in the
launchers you want to include on your launch bar.

The easiest way to add applications to your launch
bar to to select them from the “Add from menu”
button. However, due to a problem that adeskbar
has displaying some of the submenu entries on your
system, everything you want to add to your launch
bar may not be available.
In that event, you will need to click on the “Add
custom launcher” button, and fill in the fields in the
dialog box shown on the next page. The
“PCLinuxOS Control Center” entry in the screen shot
was added this way.Adeskbar running at the top of my screen.

Openbox: Add A Quick Launch Bar

35

To select the icon you want to display, simply click
on the large button on the left side of the dialog box,
and travel to the location where your icon is stored.
Unlike with wbar though, adeskbar appears to be
perfectly capable of displaying either *.svg or *.png
icon files.
Adding plug ins to adeskbar is even easier. Simply
click on the “Add plug ins” button, and select the
plug in that you want to add. I will caution you,
however, that not all of the plug ins will work. Your
“clue” that the selected plug in will not work will be
that the plug in’s icon will not immediately appear in
the adeskbar launch bar.
Under the “Advanced” tab, you can set some of the
finer aspects of how adeskbar is displayed on your
screen. Feel free to play with the settings (preferably
one at a time) to customize adeskbar on your
computer. One thing I noticed is that you cannot set
the “zoom” level for the icons on your adeskbar to
more than 1.30, or 130%, of the icon’s original size.
Also, you can change the menu icon by double
clicking on the default Gnome “footprint” icon in the
“Launchers” tab, and changing it to something you
might like better in the dialog box that appears.

(Hint: click on the Gnome icon on the large button on
the left and choose your new icon).

Summary
As you can see, there are three excellent choices in
the PCLinuxOS repository for adding a launch bar to
your Openbox installation. In fact, all three of these
can be added to any desktop, regardless if it’s
Gnome, KDE, Xfce, LXDE, or any of the other
graphical desktops.
The adesktop launch bar is the obvious choice if you
are concerned about computer resources and the
amount of disk space consumed – and if you can
tolerate its limitations. The wbar launch bar
represents a good compromise between the low
resource usage of adesktop and the relatively large
hard drive space required by Cairo­Dock. The Cairo­
Dock launch bar represents the pinnacle of “flash”
for your launch bar, if you want the flashiest launch
bar on your desktop.
All three can be set to start up automatically simply
by adding their command to the Openbox
autostart.sh file, as we covered in the July issue of
The PCLinuxOS Magazine.
So what are you waiting for? Adding a launch bar to
your desktop is fun, and it puts your most commonly
used applications only a mouse click away. Plus, it’ll
dazzle your friends when they see it in action.

It's easier than e=mc2

It's elemental
It's light years ahead

It's a wise choice
It's Radically Simple

It's ...

Openbox: Add A Quick Launch Bar

http://www.pclinuxos.com

36

by Paul Arnote (parnote)

One nice thing about many of the Linux desktop
environments and window managers is the ability to
customize the appearance of your desktop. This
doesn’t mean only wallpaper. This also includes
window appearance. Openbox is no different in this
aspect. Additionally, the information in this article
applies equally to LXDE, since it uses Openbox as
its window manager.
While it’s possible to create your own Openbox
theme from scratch by hand (obviously, since
someone had to have created the first Openbox
theme), you will find it easier to find a theme that you
like and modify it to suit your individual tastes. The
latter is the path we’ll take with this article. Typically,
you install and change your Openbox themes
through the OBConf utility. However, you can also
manually install them, provided you place them in
the proper location. You can find many ready­to­go
Openbox themes from other Openbox users.
If you choose to modify one of your favorite themes,
I strongly urge you to make a copy of the theme and
make your modifications to the copy. This way, if you
royally screw up the modification, the original
remains unaltered and intact.
To get started, it’s important to know where
Openbox themes are stored. Your themes can by
“system­wide” themes (accessible to all users on a
computer) or user­specific themes (accessible to
only that particular user). System­wide themes are
stored in /usr/share/themes, and you will need

root access to make modifications. User­specific
themes are stored in either ~/.local/themes or
~/.themes. The advantage to these themes is that
you can modify them without having root access.
The disadvantage is that they are available only to
one particular user, unless you copy the theme to
/usr/share/themes for all users to access. To do
the latter, you will need root access. I tend to use the
user­specific location, and if I come up with
something that I like, I can then move them to the
folder for system­wide themes, sharing my new
theme with all the users on my computer.
Much of what controls the appearance of a theme in
Openbox is stored in an X resource database file,
called themerc. It’s no more than a specially
formatted text file. Typically, this file is stored in the
themes folder, which takes on the form of another
folder with the name of the theme, containing
another folder named openbox­3. So, the “Appleish”
themerc file, the theme upon which I based my
modifications off of, is stored in
/usr/share/themes/Appleish/openbox­3. The
other files in the folder are the graphics files that
form the window decorations.
Most likely a byproduct of its light weight, the choice
of graphics format used to create the window
decorations in Openbox imposes some inherent
limitations. The graphics have to be in the *.xbm
format, which is a binary color format. In case that’s
not striking you just right, let me put it this way: you
can use any colors you want, so long as they are
black or white. Essentially, the *.xbm file acts like a
mask on the window title bar, and the instructions in
the themerc file tell Openbox how to paint that mask
and with what color. Face it: there aren’t a lot of

things you can do with a binary color graphic file
format.
Below is a collection of all the graphic files in the
Appleish theme, with labels:

Pretty plain, huh? As you might already be able to
tell, there aren’t a lot of options, and this somewhat
restricts what you can do in an Openbox theme.
Conversely, xfwm (the window manager for Xfce)
allows the use of *.xpm files. Xpm files allow the use
of color, giving you many, many more options in the
appearance of your window decorations.
Below is the unaltered Appleish Openbox theme,
showing an active and inactive window:

In the above image, I held the cursor over the exit
button on the window title bar (putting the window
decoration into the “hover” state), so you can see
how the image is painted by the themerc file.

Openbox: Customize Your Window ThemesOpenbox: Customize Your Window Themes

http://box-look.org/index.php?xcontentmode=7402

37

Below is my altered version of Appleish:

Again, I held the cursor over the close button of the
active window (“hovered”) so you can see how the
themerc file has been altered to paint the window
decorations in the customized version. Notice how
the close button is now painted yellow (I can’t help
myself, since yellow has always been my favorite
color), instead of dark gray.
Other differences you might notice include a
darkening of the window titlebar, a change of the
active titlebar font color to white, and the inclusion of
the “raised” drawing flag for the window titlebar. In
the altered Appleish theme, I left the inactive window
settings unchanged from the original.
Remember that all of the painting of the window
titlebars, the titlebar fonts, and the colors to use for
many other settings, are under the control of the
themerc file for the particular theme you are using.
Although colors can be expressed as names of
colors (as recognized by Xorg) and RGB:xx:xx:xx
format, the most common format for specifying
colors is the six digit hexidecimal color notation that
most associate with how you express colors in an
HTML file. Black becomes #000000, bright red is
#ff0000, bright green is #00ff00, bright blue is
#0000ff, and white is #ffffff. Other colors can be
created by creating combinations of the three color
intensities. Just be sure to keep each digit in the
range of 0 to F.

Fortunately, all of the available options for the the
themerc file are documented fully and extremely well
in the Openbox Wiki. Instead of trying to cover them
here, I’m going to refer you to this excellent resource
instead. They have already done an outstanding job
of explaining all the relevant information there.

Summary
A quick, cursory look at a themerc file may be
enough to scare some users away from customizing
their Openbox themes. But given the fact that the
themerc file is little more than a specially formatted
text file, and the additional fact that the themerc file
options are so well documented, you owe it to
yourself to at least give it a try.
Granted, while my first attempts at modifying my
Appleish theme were quite horrendous in
appearance, I quickly got a handle on what I needed
to do and ended up making a theme modification
that is uniquely mine, and one that suits me even
more than the original Appleish theme.

International CommunityPCLinuxOS Sites

Netherlands

Turkey

Denmark
Czechoslovakia

Italy

Poland

Want to keep up on the latest that's
going on with PCLinuxOS?

Follow PCLinuxOS on Twitter!
http://twitter.com/iluvpclinuxos

Openbox: Customize Your Window Themes

http://www.pclinuxos.nl/
http://www.bekozap.com/
http://www.pclinuxos.dk/news.php
http://www.pclinuxos.cz/
http://pclinuxos.it/
http://pclinuxos.org.pl/
http://twitter.com/iluvpclinuxos
http://openbox.org/wiki/Help:Themes

38

by Paul Arnote

We’ve already covered how to customize your
Openbox right click menu in the August issue of The
PCLinuxOS Magazine. However, you can further
increase the functionality of your Openbox menu by
using what’s known as “pipe menus.” Pipe menus
are menus that activate an external script, and the
information is dynamically displayed in your
Openbox menu.
Pipe menus work fairly simply. First, you write a
script (a bash script, a python script, etc.) that
performs the “work.” You then modify your
~/.config/openbox/menu.xml file to display the
dynamic menu. As daunting as it may sound, it’s
actually easier than you may think.
To get started, you need to find a script to control
your Openbox pipe menu – or write your own. If you
choose to use one that someone else has already
created, then your task will be quite a bit simpler.
Fortunately, there are several “collections” of
Openbox pipe menu scripts scattered around the
web. One place you will definitely want to check out
serves as, more or less, a central “clearing house”
for all pipe menu scripts. That place is the pipes
menu page on the Openbox Wiki.
If, however, you want to write your own custom
script, the Openbox Wiki also has a page that details
what you need to include in your script. Of course,
you may want to take a look at the examples in the
first link. I know that, for me anyway, it’s so much
easier to see an example of how to do it, in

conjunction with the “technical directions” on some
web page.

Putting Pipe Menus To Work
Take a look at this screen shot (below), that displays
your local weather forecast:

To get the weather forecast to appear in your
Openbox menu, here’s what you need to do. First,
go grab the python script. This particular version of
the weather forecast script uses weather information
from Google. If you prefer to use the weather
information from Yahoo, you can grab a different
python script. There is yet a third, different weather
script, displaying information from weather.com. The
setup steps for that script are very similar to the
steps that follow for the Google and Yahoo weather
information sources.
All of the scripts will give you similar information. The
Google source will give you a four day forecast
(today’s, plus the next three days), while the Yahoo
source will give you only a two day forecast (today’s
and tomorrow’s).
I copied the script(s) into Geany, and saved them in
~/.config/weather. Next, go into the directory and
mark the file as executable. In PCManFM, if you
right click on the file and choose “Properties” from
the context menu, select the second tab and place a
check mark in the “Make the file executable” option.
To avoid confusion, I saved the Google weather
script as gweather.py, and the Yahoo weather script
as yweather.py.
Next, you need to add a line to your
~/.config/openbox/menu.xml file, so that the menu
displays in your Openbox menu. For the Google
weather script, I added the following line (all on one
line):

Openbox: Use Pipe Menus For More FunctionalityOpenbox: Use Pipe Menus For More Functionality

http://openbox.org/wiki/Openbox:Pipemenus
http://openbox.org/wiki/Openbox:Pipemenus
https://bbs.archlinux.org/viewtopic.php?pid=586119#p586119
https://bbs.archlinux.org/viewtopic.php?pid=498171#p498171
https://bbs.archlinux.org/viewtopic.php?pid=498171#p498171
https://bbs.archlinux.org/viewtopic.php?pid=344156#p344156
https://bbs.archlinux.org/viewtopic.php?pid=344156#p344156
http://openbox.org/wiki/Help:Menus#Pipe_menus

39

<menu id="pipe­weather" label="GoogleWeather" execute="python~/.config/weather/gweather.py 64052 en" />
For the Yahoo weather script, I added the following
line (again, all on one line):
<menu id="yahoo­weather" label="YahooWeather" execute="python~/.config/weather/yweather.py 64052Fahrenheit" />
As you can see, the options for both differ a little bit.
For the Google weather script, you include the city
code for your area (in the U.S., that’s your ZIP code)
and the language you want to use to display the
information (in my case, “en” for English). For the
Yahoo weather script, you include the city code for
your area, along with the measurement units you
want to use for displaying the temperature
(Fahrenheit for the U.S., and Celsius for most
everywhere else).
After editing your ~/.config/openbox/menu.xml file,
right click your mouse on an empty spot on your
desktop, and select the Openbox > Reload Openbox
menu item to load your new menu into the Openbox
menu. On subsequent reboots, this step will not be
necessary.
One caveat about the Yahoo weather script,
however, is in order. The script is set up to cache the
data from Yahoo, so that repeated access to the
script doesn’t keep retrieving data from Yahoo. The
time length for the cache is set to six hours, meaning
that despite how many times you access the Yahoo
weather script during that time frame, you will be

viewing the cached data. Near the top of the script
(line 27), look for the entry named
“CACHE_HOURS.” Change the “6” to “1,” and now
the cached data will expire after one hour. This
means that repeated attempts to access the Yahoo
weather data will be refreshed if the data is more
than one hour old. Accessing the weather data in
less than the one hour time frame will result in the
cached data being displayed.

More than just weather reports
Of course, you can do more than just display
weather information on demand via the Openbox
menu. Another one that I found useful is called
“sysinfo.”
As you can see by the screenshot (top of next
column), sysinfo provides lots of information about
your computer system. This information includes the
current kernel you are using, information about your
drive partitions, data about RAM usage, swap file
usage and CPU usage, information about your
network connection, as well as time and date
information.
To use this on your Openbox installation, first go
grab the bash script that controls the display of this
information. You may need to edit the bash script so
that the information displayed reflects your computer
and its hardware options. For example, I had to edit
the bash script to display the proper hard drives for
my system, as well as the network information.

Again, I copied the script into Geany, saved it at
~/.config/sysinfo as sysinfo.sh, and made the file
executable. Next, I placed the following line in my
~/.config/openbox/menu.xml file (again, all on one
line):
<menu id="sysinfo" label="System Info"execute="~/.config/sysinfo/sysinfo.sh" />
Reload Openbox, via the Openbox > Reload
Openbox menu item on your Openbox menu to
access your new menu item.

Openbox: Use Pipe Menus For More Functionality

http://david.chalkskeletons.com/scripts/sysinfo.sh

40

Having some more fun
There are more items you may want to add to your
Openbox menu. One pipe menu script adds RSS
news feeds to your Openbox menu. Another checks
your email, from the Openbox menu. Another
displays a calendar and the current time. Yet others
control playback of sound files, change wallpapers,
and much more. Refer to the Openbox Wiki “clearing
house” for a full list of pre­made Openbox pipe
menus.

Summary
Basically, anything you can script can be formatted
to work with Openbox’s pipe menus. This is where
your custom scripting skills can help to truly make
your Openbox experience unique.
If you want to read more about Openbox pipe
menus, check out the TechRepublic articles that
appeared at the end of July and in early August.
This article had been planned since before we ever
started doing Openbox articles, back when we were
in the planning stages for the series of articles on
Openbox. The TechRepublic articles help provide
even more resources for those interested in learning
more about Openbox’s pipe menus.
You can make the use of pipe menus as easy or as
complex as you like. But use them you should, since
they help provide a more complete, more
customized user experience.

Screenshot ShowcaseScreenshot Showcase

Posted by coffeetime on November 4, 2011

Openbox: Use Pipe Menus For More Functionality

http://www.nakamura-gebiet.de/scripts/feeder.py
http://www.nakamura-gebiet.de/scripts/feeder.py
http://www.nakamura-gebiet.de/scripts/checkmail.tar.bz2
http://www.nakamura-gebiet.de/scripts/checkmail.tar.bz2
http://openbox.org/wiki/Openbox:Pipemenus:Date_Menu
http://www.techrepublic.com/blog/opensource/four-great-pipe-menus-for-openbox/2720?tag=content;siu-container
http://www.techrepublic.com/blog/opensource/how-to-write-your-own-pipe-menu-scripts/2759?tag=nl.e011

41

by Darrel Johnston (djohnston)
& Paul Arnote (parnote)

Add a run dialog to the Openbox menu
Open Synaptic and install the gnome­run­dialog
package. Once that is accomplished, open the
~/.config/openbox/menu.xml file in a text editor. Add
a section like the one shown below.
<item label="Run"><action name="Execute"><execute>gnome­run­dialog</execute></action></item>
The item label is what we want shown in the
Openbox menu. gnome­run­dialog is the program
we want executed when we click on Run in the

Openbox menu. Once you have edited and saved
the menu.xml file, you can freshen the Openbox
menu by logging out, rebooting, or clicking on
Reconfigure or Restart in the submenu of the
OpenBox label. Once you click on Run in the menu,
the gnome­run­dialog window will appear.

Turn off fades and shadows to speed things up
In the Bonsai version of the PCLinuxOS Openbox
edition, xcompmgr is disabled. We can enable it at
login by opening the ~/.config/openbox/autostart.sh

file and uncommenting the line #xcompmgr & by
removing the # sign at the beginning of the line.
However, this is unnecessary, as the composite
manager effects can be turned on and off from the
Openbox menu.
If the effects are off, selecting any of the
Transparency menu items will turn the composite
manager on. Doing so will automatically uncomment
the xcompmgr & line in the autostart.sh file by
executing one of the ~/.config/openbox/scripts/
xcompmgr.sh options, as defined in the menu.xml
file. Selecting Transparency will execute ~/.config/
openbox/scripts/xcompmgr.sh set. Selecting
Transparency, fadings will execute ~/.config/
openbox/scripts/xcompmgr.sh setshaded. Selecting
Transparency, fadings, shadows will execute
~/.config/openbox/scripts/xcompmgr.sh
setshadowshade. Selecting No effects from the
menu will comment the #xcompmgr & line in the
autostart.sh file, and will execute ~/.config/openbox/
scripts/xcompmgr.sh unset in the menu.xml file. Any
changes made are kept at next login.

Use lxcursor to change cursor theme
We can use lxcursor to change our cursor theme.
Open Synaptic and install the lxcursor package.
Once that is accomplished, there is nothing to edit in
the Openbox menu.xml file, unless you want to show
the item in the main portion of the menu. We will,
however, need to edit the desktop file, located at
/usr/share/applications/lxcursor.desktop. As user
root, open the desktop file in a text editor. Scroll
down towards the bottom of the file and locate the
line OnlyShowIn=LXDE;. Here, you can either

Openbox: Tips & TricksOpenbox: Tips & Tricks

42

comment the line by adding the # symbol at the
beginning of the line, or by deleting the entire line.
Once the changes have been made, save the
desktop file. To have the LXCursor item show in the
Openbox submenu, freshen the Openbox menu by
logging out, rebooting, or clicking on Reconfigure or
Restart in the submenu of the OpenBox label.

If you change the current cursor theme, the change
will not take effect until you have logged out and
logged in again.

Screenshots Via The Keyboard – Revisited
In the November 2010 issue of The PCLinuxOS
Magazine, back when we were wrapping up our
series of articles on the LXDE desktop, we covered
how to add keybindings to take screen shots (see
the Advanced Keyboard Shortcuts section of the
article).
One problem with the keybindings, as they were
presented, is that they take the screen shot
immediately. Normally, this isn’t necessarily a
problem. But it is if you want to capture menus in
your screen shots, or some other on­screen
animations (as I needed to do when taking the
screen shots for the article on launch bars), taking
the screen shots immediately won’t work.
Fortunately, there is a solution, and it’s quite simple.
For example, take the command to capture the full
screen shot (as excerpted from the original article):
bash ­c "xwd ­root | convert ­/tmp/screenshot­$(date +%s).png"
I simply added sleep 5; to the beginning of the
command that is between the quotes. This provides
a five second delay before carrying out the rest of
the command that takes a screen shot of the full
screen. The five second delay gives you ample time
to activate a menu or animation that you might want
to capture in the screen shot. This command uses
the keybinding Ctrl + Print.
While I was “tinkering” with this command, I also
took time to reformat the file name and where my

screen shots were stored. As it was in the original
article, it a) stored the image in your /tmp directory,
and b) used a cryptic number after the date that
specified how many seconds since 01­01­1970 UTC
(the %s in the command above).
Instead, I changed the location where the screen
shots are saved. I created a “Screenshots” directory
under my “Pictures” directory, and used that instead.
Second, I reformatted the information after the date
to reflect something that is more easily read (and
understood) by humans. I ended up with this:
bash ­c "sleep 5;xwd ­root | convert ­~/Pictures/Screenshots/screenshot­$(date+%F­%H­%M­%S).png"
The %F uses the full date (YYYY­Month­Day), then
prints a dash, then the hour (%H, based on a 24
hour clock) as two digits, another dash, then the
minutes (%M) as two digits, another dash, then the
seconds (%S) as two digits. Done this way, it makes
it easier to locate the appropriate screen shot in a
directory full of other screen shots.

Another Thing About Screen Shots
The above method does have one teensy­weensy
problem: it won’t capture transparency areas of a
screen image that you may want to preserve.
Instead of showing the transparency, it shows a
transparent region as black. Most of the time, that is
not a problem – unless I’m trying to show the
transparency in the screen shot.

Openbox: Tips & Tricks

http://pclosmag.com/html/Issues/201011/page09.html

43

One of the applications I routinely use from the
PCLinuxOS repository is MTPaint. When it comes to
cropping an image for the magazine, there’s little
else that beats the simplicity of MTPaint. It’s much
faster to load than Gimp, and it makes sense to me
to use a simple tool for a simple job.
Fortunately, MTPaint will also take screen shots.
Anyone who has installed MTPaint from the
PCLinuxOS repository will also notice that there are
two entries in the Graphics section of the
applications menu: one for the MTPaint program
itself, and another one labeled MTPaint Screenshot.
The latter will preserve any level of transparency that
is displayed on your screen, as well, which is why I
like to use it.
The only problem is that MTPaint Screenshot takes
the screen shot image immediately. This doesn’t
allow me to capture any menu images or animations
on the screen that I may also need to display.
Fortunately, the solution was only a very short bash
script away.
Borrowing from my five second delay I added to the
keybinding method above, I created a bash script
that executed a five second delay, and then used
MTPaint to capture the screen shot. Here’s the
simple bash script:
#! /bin/bashsleep 5/usr/bin/mtpaint ­s
The first line (of course, after the bash line) causes a
five second pause before executing the second line,

which runs MTPaint in the screen shot mode (hence,
the ­s command line option).
The only drawback here is that MTPaint will only
grab a screen shot of the entire screen. But, what
the hey. It also loads it into the MTPaint editor,
where I can easily crop the image to only the part
that I need.

Add A Power Manager & Monitor
Openbox, as it comes, doesn’t have its own power
manager or monitor. However, you can install the
Gnome Power Manager, via Synaptic. With Gnome
Power Manager, you can monitor your power and
battery status. Additionally, it will warn you when
your laptop battery gets low, and suspend, hibernate
or shut down your computer when it the battery
becomes critically low. Fortunately, Gnome Power
Manager doesn’t pull in many Gnome
dependencies, helping to keep your Openbox
installation light and nimble.
To insure that mine starts every time I start my
computer, I added the following two lines to my
autostart.sh file, in my ~/.config/openbox directory:
gnome­power­manager &sleep 1
Now, Gnome Power Manager starts and runs in my
system tray all the time, keeping a watchful eye on
the status of my power and battery status.

Let There Be Sound
Well, okay. I may be exaggerating a bit, but out of
the starting gates, Openbox doesn’t have a sound
volume manager running either. Check in Synaptic
to see if VolumeIcon is installed already. If it isn’t, go
ahead and install it.
Next, much as we did with the Gnome Power
Manager above, add the following two lines to your
autostart.sh file:
volumeicon &sleep 1
Now, whenever you start up your computer,
VolumeIcon will be ever present to allow you quick
and easy access to controlling the sound volume on
your computer.

Openbox: Tips & Tricks

http://www.pclinuxos.com/?page_id=542

44

by Paul Arnote (parnote)

After all the talk in these magazine pages about
Openbox in the recent months, you may be
wondering where you can find more information
about Openbox. While the articles dealt with
Openbox 3.4, Openbox 3.5 has just been released.
Fortunately, all the information in the articles we’ve
published over the last few months is equally
applicable to Openbox 3.5. Melodie has been
working on updated Openbox ISOs that feature the
newer Openbox 3.5, and it should be released
before too much longer.
Meanwhile, check out these resources below for
more Openbox information.

Openbox Wiki
For all things Openbox, this is your one­stop­shop.
You will find information about all sorts of Openbox
options, as well as the “official” documentation. You
can also find information regarding all sorts of
Openbox add­ons. Just remember that it is not
recommended to install applications from outside the
official PCLinuxOS repository. Instead, make a post
in the Package Suggest section of the PCLinuxOS
forum for one of our packagers to package the add­
on, so it can be added to the official PCLinuxOS
repository.

Box­Look.org
There’s nothing quite like redecorating from time to
time, and when the urge strikes you to redecorate
your Openbox desktop, make this site your first stop.
Here, you will find new Openbox themes,
wallpapers, fonts, logos and other cool stuff.

Customize.org
Find even more Openbox themes, wallpapers and
icon sets at this site. The link above sorts out those
user­submitted customizations that have the
Openbox tag applied to them.

Urukrama’s Openbox Guide
If a well written, well researched guide to Openbox,
written in plain English is more to your liking, then
look no further than Urukrama’s Openbox Guide.
The guide appears to be quite complete, and should
be bookmarked by every Openbox user, so that the
full potential of Openbox may be realized.

ArchLinux Wiki
Over at the ArchLinux Wiki, they maintain a very
complete Openbox section, separate from the
“official” Openbox Wiki. Of special interest is the
special “Tips & Tricks” section. Topics in the “Tips &
Tricks” section range from fairly simple to advanced
and complex.

DeviantArt
To be honest, I would have never thought to look at
DeviantArt for window manager themes. But, lo and
behold, they are there. As with anything you might
expect to find at DeviantArt, the quality is quite nice,
so you should take the time to check out the
offerings here.

I’m sure that with a little more digging, you can find
other Openbox resources on the ‘net. However,
these six sites should go a long way towards getting
you sailing a smooth course with Openbox.

Openbox Resources: Learn More About ItOpenbox Resources: Learn More About It

http://www.linuxfoundation.org/
http://openbox.org/wiki/Main_Page
http://box-look.org/index.php?xcontentmode=7402
http://customize.org/browse/tags/openbox
http://urukrama.wordpress.com/openbox-guide/
https://wiki.archlinux.org/index.php/Openbox
http://www.deviantart.com/?catpath=customization/skins/linuxutil/winmanagers/openbox&order=5Customise.org

